

Praise for the Sun Certified Programmer & Developer for Java 2 Study Guide

"Kathy Sierra is one of the few people in the world who can make complicated
things seem damn simple. And as if that isn't enough, she can make boring things
seem interesting. I always look forward to reading whatever Kathy writes—she's one
of my favorite authors."

—Paul Wheaton, Trail Boss JavaRanch.com

"Who better to write a Java study guide than Kathy Sierra, the reigning queen of
Java instruction? Kathy Sierra has done it again—here is a study guide that almost
guarantees you a certification!"

—James Cubeta, Systems Engineer, SGI

"The thing I appreciate most about Kathy is her quest to make us all remember that
we are teaching people and not just lecturing about Java. Her passion and desire
for the highest quality education that meets the needs of the individual student is
positively unparalleled at SunEd. Undoubtedly there are hundreds of students who
have benefited from taking Kathy's classes."

—Victor Peters, founder Next Step Education & Software Sun Certified Java Instructor

"I want to thank Kathy for the EXCELLENT Study Guide. The book is well written,
every concept is clearly explained using a real life example, and the book states what
you specifically need to know for the exam. The way it's written, you feel that you're
in a classroom and someone is actually teaching you the difficult concepts, but not
in a dry, formal manner. The questions at the end of the chapters are also REALLY
good, and I am sure they will help candidates pass the test. Watch out for this
Wickedly Smart book."

—Alfred Raouf, Web Solution Developer

"The Sun Certification exam was certainly no walk in the park, but Kathy's material
allowed me to not only pass the exam, but Ace it!"

—Mary Whetsel, Sr. Technology Specialist,
Application Strategy and Integration, The St. Paul Companies

"Bert has an uncanny and proven ability to synthesize complexity into simplicity
offering a guided tour into learning what's needed for the certification exam."

—Thomas Bender, President, Gold Hill Software Design, Inc.

"With his skill for clearly expressing complex concepts to his training audience,
every student can master what Bert has to teach."

—David Ridge, CEO, Ridge Associates

"I found this book to be extremely helpful in passing the exam. It was very well
written with just enough light-hearted comments to make you forget that you were
studying for a very difficult test. HIGHLY RECOMMENDED!!"

— Nicole Y. McCullough

"I have never enjoyed reading a technical book as much as I did this one…This
morning I took the SCJP test and got 98% (60 out of 61) correct. Such success
would not have been possible without this book!"

— Yurie Nagorny

"I gave SCJP 1.4 in July 2004 & scored 95% (58/61). Kathy & Bert have an
awesome writing style & they literally burnt the core concepts into my head."

— Bhushan P. Madan (Kansas, United States)

"I just took my certification test last week and passed with a score of 95%. Had I not
gone through this book, there would have been little chance of doing so well on the
test. Thank you Kathy and Bert for a wonderful book!"

— Jon W. Kinsting (Saratoga, California United States)

"Don't hesitate to make this book your primary guide for SCJP 1.4 preparation. The
authors have made a marvellous job about delivering the vital facts you need to
know for the exam while leaving out tons of otherwise valuable data that fall beyond
the scope. Both authors have participated in creating the real questions for the real
exam thus providing an invaluable insight to discern the true nature of what you are
up to doing. Unlike many other certification guides…this one makes perfect reading.
The most boring Sun objectives in the book are nicely interwoven with the gems of
refreshingly spicy humor."

— Vad Fogel (Ontario, Canada)

SCJP Sun® Certifi ed
Programmer for Java™ 6

Study Guide

(Exam 310-065)

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159107-9

The material in this eBook also appears in the print version of this title: 0-07-159106-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071591060

xiii

CONTENTS

Contributors . vii
Acknowledgments xx
Preface . xxi
Introduction . xxiii

1 Declarations and Access Control 1
Java Refresher . 2
Identifiers & JavaBeans (Objectives 1.3 and 1.4) 4

Legal Identifiers 5
Sun's Java Code Conventions 6
JavaBeans Standards 8

Declare Classes (Exam Objective 1.1) 10
Source File Declaration Rules 11
Class Declarations and Modifiers 12
Exercise 1-1: Creating an Abstract Superclass and

Concrete Subclass 18
Declare Interfaces (Exam Objectives 1.1 and 1.2) 19

Declaring an Interface 19
Declaring Interface Constants 22

Declare Class Members (Objectives 1.3 and 1.4) 24
Access Modifiers 24
Nonaccess Member Modifiers 39
Constructor Declarations 47
Variable Declarations 49
Declaring Enums 60

 ✓ Two-Minute Drill 68
Q&A Self Test . 74

Self Test Answers 79

xiv SCJP Sun Certifi ed Programmer for Java 6 Study Guide

2 Object Orientation . 85
Encapsulation (Exam Objective 5.1) 86
Inheritance, Is-A, Has-A (Exam Objective 5.5) 90

IS-A . 94
HAS-A . 96

Polymorphism (Exam Objective 5.2) 98
Overriding / Overloading (Exam Objectives 1.5 and 5.4) 103

Overridden Methods 103
Overloaded Methods 109

Reference Variable Casting (Objective 5.2) 116
Implementing an Interface (Exam Objective 1.2) 120
Legal Return Types (Exam Objective 1.5) 126

Return Type Declarations 126
Returning a Value 128

Constructors and Instantiation
 (Exam Objectives 1.6, 5.3, and 5.4) 130

Determine Whether a Default Constructor
Will Be Created 135

Overloaded Constructors 139
Statics (Exam Objective 1.3) 145

Static Variables and Methods 145
Coupling and Cohesion (Exam Objective 5.1) 151
 ✓ Two-Minute Drill 157
Q&A Self Test . 162

Self Test Answers 171

3 Assignments . 183
Stack and Heap—Quick Review 184
Literals, Assignments, and Variables
 (Exam Objectives 1.3 and 7.6) 186

Literal Values for All Primitive Types 186
Assignment Operators 190
Exercise 3-1: Casting Primitives 195
Using a Variable or Array Element That Is Uninitialized

and Unassigned 203
Local (Stack, Automatic) Primitives and Objects 207

Contents xv

Passing Variables into Methods (Objective 7.3) 213
Passing Object Reference Variables 213
Does Java Use Pass-By-Value Semantics? 214
Passing Primitive Variables 215

Array Declaration, Construction, and Initialization
 (Exam Objective 1.3) 219

Declaring an Array 219
Constructing an Array 220
Initializing an Array 224
Initialization Blocks 234

Using Wrapper Classes and Boxing (Exam Objective 3.1) 237
An Overview of the Wrapper Classes 238
Creating Wrapper Objects 239
Using Wrapper Conversion Utilities 240
Autoboxing 244

Overloading (Exam Objectives 1.5 and 5.4) 247
Garbage Collection (Exam Objective 7.4) 254

Overview of Memory Management and
Garbage Collection . 254

Overview of Java's Garbage Collector 255
Writing Code That Explicitly Makes Objects Eligible

for Collection 257
Exercise 3-2: Garbage Collection Experiment 262

 ✓ Two-Minute Drill 265
Q&A Self Test . 269

Self Test Answers 277

4 Operators . 287
Java Operators (Exam Objective 7.6) 288

Assignment Operators 288
Relational Operators 290
instanceof Comparison 295
Arithmetic Operators 298
Conditional Operator 304
Logical Operators 305

 ✓ Two-Minute Drill 311
Q&A Self Test . 313

Self Test Answers 319

xviii SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Generic Types (Objectives 6.3 and 6.4) 595
Generics and Legacy Code 600
Mixing Generic and Non-generic Collections 601
Polymorphism and Generics 607
Generic Methods 609
Generic Declarations 622

 ✓ Two-Minute Drill 631
Q&A Self Test . 636

Self Test Answers 647

8 Inner Classes . 661
Inner Classes . 663

Coding a "Regular" Inner Class 664
Referencing the Inner or Outer Instance from Within

the Inner Class 668
Method-Local Inner Classes 670

What a Method-Local Inner Object Can and Can't Do . . 671
Anonymous Inner Classes 673

Plain-Old Anonymous Inner Classes, Flavor One 673
Plain-Old Anonymous Inner Classes, Flavor Two 677
Argument-Defined Anonymous Inner Classes 678

Static Nested Classes 680
Instantiating and Using Static Nested Classes 681

 ✓ Two-Minute Drill 683
Q&A Self Test . 685

Self Test Answers 692

9 Threads . 701
Defining, Instantiating, and Starting Threads (Objective 4.1) . . . 702

Defining a Thread 705
Instantiating a Thread 706
Starting a Thread 709

Thread States and Transitions (Objective 4.2) 718
Thread States 718
Preventing Thread Execution 720
Sleeping . 721
Exercise 9-1: Creating a Thread and

Putting It to Sleep . 723
Thread Priorities and yield() 724

Contents xix

Synchronizing Code (Objective 4.3) 728
Synchronization and Locks 735
Exercise 9-2: Synchronizing a Block of Code 738
Thread Deadlock 745

Thread Interaction (Objective 4.4) 746
Using notifyAll() When Many Threads

May Be Waiting . 752
 ✓ Two-Minute Drill . 758
Q&A Self Test . 761

Self Test Answers . 772
Exercise Answers . 787

10 Development . 789
Using the javac and java Commands
 (Exam Objectives 7.1, 7.2, and 7.5) 790

Compiling with javac 790
Launching Applications with java 793
Searching for Other Classes 796

JAR Files (Objective 7.5) 802
JAR Files and Searching 803

Using Static Imports (Exam Objective 7.1) 806
Static Imports 806

 ✓ Two-Minute Drill 809
Q&A Self Test . 811

Self Test Answers 820

A About the CD . 831
System Requirements 832
Installing and Running Master Exam 832

Master Exam 832
Electronic Book . 833
Help . 833
Removing Installation(s) 833
Technical Support . 833

LearnKey Technical Support 833

 Index . 835

2 Chapter 1: Declarations and Access Control

W e assume that because you're planning on becoming certified, you already know
the basics of Java. If you're completely new to the language, this chapter—and the
rest of the book—will be confusing; so be sure you know at least the basics of the

language before diving into this book. That said, we're starting with a brief, high-level refresher to
put you back in the Java mood, in case you've been away for awhile.

Java Refresher
A Java program is mostly a collection of objects talking to other objects by invoking
each other's methods. Every object is of a certain type, and that type is defined by a
class or an interface. Most Java programs use a collection of objects of many different
types.

■ Class A template that describes the kinds of state and behavior that objects
of its type support.

■ Object At runtime, when the Java Virtual Machine (JVM) encounters the
new keyword, it will use the appropriate class to make an object which is an
instance of that class. That object will have its own state, and access to all of
the behaviors defined by its class.

■ State (instance variables) Each object (instance of a class) will have its
own unique set of instance variables as defined in the class. Collectively, the
values assigned to an object's instance variables make up the object's state.

■ Behavior (methods) When a programmer creates a class, she creates meth-
ods for that class. Methods are where the class' logic is stored. Methods are
where the real work gets done. They are where algorithms get executed, and
data gets manipulated.

Identifiers and Keywords
All the Java components we just talked about—classes, variables, and methods—
need names. In Java these names are called identifiers, and, as you might expect,
there are rules for what constitutes a legal Java identifier. Beyond what's legal,

78 Chapter 1: Declarations and Access Control

 9. Given:
 4. public class Frodo extends Hobbit {
 5. public static void main(String[] args) {
 6. Short myGold = 7;
 7. System.out.println(countGold(myGold, 6));
 8. }
 9. }
10. class Hobbit {
11. int countGold(int x, int y) { return x + y; }
12. }

 What is the result?

 A. 13

 B. Compilation fails due to multiple errors

 C. Compilation fails due to an error on line 6

 D. Compilation fails due to an error on line 7

 E. Compilation fails due to an error on line 11

SELF TEST ANSWERS
 1. Which is true? (Choose all that apply.)

 A. "X extends Y" is correct if and only if X is a class and Y is an interface

 B. "X extends Y" is correct if and only if X is an interface and Y is a class

 C. "X extends Y" is correct if X and Y are either both classes or both interfaces

 D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

 Answer:

 ® ✓ C is correct.

 ®̊ A is incorrect because classes implement interfaces, they don't extend them. B is incorrect
because interfaces only "inherit from" other interfaces. D is incorrect based on the
preceding rules. (Objective 1.2)

 2. Which method names follow the JavaBeans standard? (Choose all that apply.)
 A. addSize

 B. getCust

 C. deleteRep

 D. isColorado

 E. putDimensions

 Answer:

 ® ✓ B and D use the valid prefixes 'get' and 'is'.

 ®̊ A is incorrect because 'add' can be used only with Listener methods. C and E are
incorrect because 'delete' and 'put' are not standard JavaBeans name prefixes.
(Objective 1.4)

 3. Given:
1. class Voop {
2. public static void main(String[] args) {
3. doStuff(1);
4. doStuff(1,2);
5. }
6. // insert code here
7. }

Self Test Answers 79

80 Chapter 1: Declarations and Access Control

 Which, inserted independently at line 6, will compile? (Choose all that apply.)
 A. static void doStuff(int... doArgs) { }

 B. static void doStuff(int[] doArgs) { }

 C. static void doStuff(int doArgs...) { }

 D. static void doStuff(int... doArgs, int y) { }

 E. static void doStuff(int x, int... doArgs) { }

 Answer:

 ® ✓ A and E use valid var-args syntax.

 ®̊ B and C are invalid var-arg syntax, and D is invalid because the var-arg must be the last
of a method's arguments. (Objective 1.4)

 4. Given:
 1. enum Animals {
 2. DOG("woof"), CAT("meow"), FISH("burble");
 3. String sound;
 4. Animals(String s) { sound = s; }
 5. }
 6. class TestEnum {
 7. static Animals a;
 8. public static void main(String [] args) {
 9. System.out.println(a.DOG.sound + " " + a.FISH.sound);
10. }
11. }

 What is the result?

 A. woof burble

 B. Multiple compilation errors

 C. Compilation fails due to an error on line 2

 D. Compilation fails due to an error on line 3

 E. Compilation fails due to an error on line 4

 F. Compilation fails due to an error on line 9

 Answer:

 ® ✓ A is correct; enums can have constructors and variables.

 ®̊ B, C, D, E, and F are incorrect; these lines all use correct syntax. (Objective 1.3)

 5. Given two files:
 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. public int c = 7;
 6. }

 3. package pkgB;
 4. import pkgA.*;
 5. public class Baz {
 6. public static void main(String[] args) {
 7. Foo f = new Foo();
 8. System.out.print(" " + f.a);
 9. System.out.print(" " + f.b);
10. System.out.print(" " + f.c);
11. }
12. }

 What is the result? (Choose all that apply.)

 A. 5 6 7

 B. 5 followed by an exception

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

 Answer:

 ® ✓ D and E are correct. Variable a has default access, so it cannot be accessed from outside the
package. Variable b has protected access in pkgA.

 ®̊ A, B, C, and F are incorrect based on the above information. (Objective 1.1)

 6. Given:
 1. public class Electronic implements Device
 { public void doIt() { } }
 2.
 3. abstract class Phone1 extends Electronic { }
 4.
 5. abstract class Phone2 extends Electronic
 { public void doIt(int x) { } }
 6.

Self Test Answers 81

82 Chapter 1: Declarations and Access Control

 7. class Phone3 extends Electronic implements Device
 { public void doStuff() { } }
 8.
 9. interface Device { public void doIt(); }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 1

 C. Compilation fails with an error on line 3

 D. Compilation fails with an error on line 5

 E. Compilation fails with an error on line 7

 F. Compilation fails with an error on line 9

 Answer:

 ® ✓ A is correct; all of these are legal declarations.

 ®̊ B, C, D, E, and F are incorrect based on the above information. (Objective 1.2)

 7. Given:
 4. class Announce {
 5. public static void main(String[] args) {
 6. for(int __x = 0; __x < 3; __x++) ;
 7. int #lb = 7;
 8. long [] x [5];
 9. Boolean []ba[];
10. enum Traffic { RED, YELLOW, GREEN };
11. }
12. }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 6

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

98 Chapter 2: Object Orientation

Users of the Horse class (that is, code that calls methods on a Horse instance),
think that the Horse class has Halter behavior. The Horse class might have a
tie(LeadRope rope) method, for example. Users of the Horse class should never
have to know that when they invoke the tie() method, the Horse object turns
around and delegates the call to its Halter class by invoking myHalter.tie(rope).
The scenario just described might look like this:

public class Horse extends Animal {
 private Halter myHalter = new Halter();
 public void tie(LeadRope rope) {
 myHalter.tie(rope); // Delegate tie behavior to the
 // Halter object
 }
}
public class Halter {
 public void tie(LeadRope aRope) {
 // Do the actual tie work here
 }
}

In OO, we don't want callers to worry about which class or which object
is actually doing the real work. To make that happen, the Horse class hides
implementation details from Horse users. Horse users ask the Horse object to
do things (in this case, tie itself up), and the Horse will either do it or, as in this
example, ask something else to do it. To the caller, though, it always appears that
the Horse object takes care of itself. Users of a Horse should not even need to know
that there is such a thing as a Halter class.

CERTIFICATION OBJECTIVE

Polymorphism (Exam Objective 5.2)
5.2 Given a scenario, develop code that demonstrates the use of polymorphism. Further,
determine when casting will be necessary and recognize compiler vs. runtime errors related
to object reference casting.

Polymorphism (Exam Objective 5.2) 99

Remember, any Java object that can pass more than one IS-A test can be
considered polymorphic. Other than objects of type Object, all Java objects are
polymorphic in that they pass the IS-A test for their own type and for class Object.

 Remember that the only way to access an object is through a reference variable,
and there are a few key things to remember about references:

■ A reference variable can be of only one type, and once declared, that type
can never be changed (although the object it references can change).

■ A reference is a variable, so it can be reassigned to other objects, (unless the
reference is declared final).

■ A reference variable's type determines the methods that can be invoked on
the object the variable is referencing.

■ A reference variable can refer to any object of the same type as the declared
reference, or—this is the big one—it can refer to any subtype of the
declared type!

■ A reference variable can be declared as a class type or an interface type. If
the variable is declared as an interface type, it can reference any object of any
class that implements the interface.

Earlier we created a GameShape class that was extended by two other classes,
PlayerPiece and TilePiece. Now imagine you want to animate some of the
shapes on the game board. But not all shapes can be animatable, so what do you do
with class inheritance?

Could we create a class with an animate() method, and have only some of
the GameShape subclasses inherit from that class? If we can, then we could have
PlayerPiece, for example, extend both the GameShape class and Animatable class,
while the TilePiece would extend only GameShape. But no, this won't work! Java
supports only single inheritance! That means a class can have only one immediate
superclass. In other words, if PlayerPiece is a class, there is no way to say
something like this:

class PlayerPiece extends GameShape, Animatable { // NO!
 // more code
}

A class cannot extend more than one class. That means one parent per class. A
class can have multiple ancestors, however, since class B could extend class A, and
class C could extend class B, and so on. So any given class might have multiple
classes up its inheritance tree, but that's not the same as saying a class directly
extends two classes.

Some languages (like C++) allow a class to extend more than one other class.
This capability is known as "multiple inheritance." The reason that Java's
creators chose not to allow multiple inheritance is that it can become quite
messy. In a nutshell, the problem is that if a class extended two other classes,
and both superclasses had, say, a doStuff() method, which version of doStuff()
would the subclass inherit? This issue can lead to a scenario known as the
"Deadly Diamond of Death," because of the shape of the class diagram that
can be created in a multiple inheritance design. The diamond is formed when
classes B and C both extend A, and both B and C inherit a method from A. If
class D extends both B and C, and both B and C have overridden the method
in A, class D has, in theory, inherited two different implementations of the
same method. Drawn as a class diagram, the shape of the four classes looks
like a diamond.

So if that doesn't work, what else could you do? You could simply put the
animate() code in GameShape, and then disable the method in classes that can't be
animated. But that's a bad design choice for many reasons, including it's more error-
prone, it makes the GameShape class less cohesive (more on cohesion in a minute),
and it means the GameShape API "advertises" that all shapes can be animated, when
in fact that's not true since only some of the GameShape subclasses will be able to
successfully run the animate() method.

So what else could you do? You already know the answer—create an Animatable
interface, and have only the GameShape subclasses that can be animated implement
that interface. Here's the interface:

public interface Animatable {
 public void animate();
}

And here's the modified PlayerPiece class that implements the interface:

100 Chapter 2: Object Orientation

Polymorphism (Exam Objective 5.2) 101

class PlayerPiece extends GameShape implements Animatable {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 public void animate() {
 System.out.println("animating...");
 }
 // more code

}

So now we have a PlayerPiece that passes the IS-A test for both the
GameShape class and the Animatable interface. That means a PlayerPiece can be
treated polymorphically as one of four things at any given time, depending on the
declared type of the reference variable:

■ An Object (since any object inherits from Object)

■ A GameShape (since PlayerPiece extends GameShape)

■ A PlayerPiece (since that's what it really is)

■ An Animatable (since PlayerPiece implements Animatable)

The following are all legal declarations. Look closely:

 PlayerPiece player = new PlayerPiece();
 Object o = player;
 GameShape shape = player;

 Animatable mover = player;

There's only one object here—an instance of type PlayerPiece—but there
are four different types of reference variables, all referring to that one object on
the heap. Pop quiz: which of the preceding reference variables can invoke the
displayShape() method? Hint: only two of the four declarations can be used to
invoke the displayShape() method.

Remember that method invocations allowed by the compiler are based solely on
the declared type of the reference, regardless of the object type. So looking at the
four reference types again—Object, GameShape, PlayerPiece, and Animatable—
which of these four types know about the displayShape() method?

You guessed it—both the GameShape class and the PlayerPiece class are known
(by the compiler) to have a displayShape() method, so either of those reference types

can be used to invoke displayShape(). Remember that to the compiler, a
PlayerPiece IS-A GameShape, so the compiler says, "I see that the declared
type is PlayerPiece, and since PlayerPiece extends GameShape, that means
PlayerPiece inherited the displayShape() method. Therefore, PlayerPiece
can be used to invoke the displayShape() method."

Which methods can be invoked when the PlayerPiece object is being referred
to using a reference declared as type Animatable? Only the animate() method.
Of course the cool thing here is that any class from any inheritance tree can also
implement Animatable, so that means if you have a method with an argument
declared as type Animatable, you can pass in PlayerPiece objects, SpinningLogo
objects, and anything else that's an instance of a class that implements Animatable.
And you can use that parameter (of type Animatable) to invoke the animate()
method, but not the displayShape() method (which it might not even have), or
anything other than what is known to the compiler based on the reference type. The
compiler always knows, though, that you can invoke the methods of class Object on
any object, so those are safe to call regardless of the reference—class or interface—
used to refer to the object.

We've left out one big part of all this, which is that even though the compiler
only knows about the declared reference type, the Java Virtual Machine (JVM)
at runtime knows what the object really is. And that means that even if the
PlayerPiece object's displayShape() method is called using a GameShape
reference variable, if the PlayerPiece overrides the displayShape() method, the
JVM will invoke the PlayerPiece version! The JVM looks at the real object at the
other end of the reference, "sees" that it has overridden the method of the declared
reference variable type, and invokes the method of the object's actual class. But one
other thing to keep in mind:

Polymorphic method invocations apply only to instance methods. You can
always refer to an object with a more general reference variable type (a su-
perclass or interface), but at runtime, the ONLY things that are dynamically
selected based on the actual object (rather than the reference type) are instance
methods. Not static methods. Not variables. Only overridden instance meth-
ods are dynamically invoked based on the real object's type.

Since this definition depends on a clear understanding of overriding, and the
distinction between static methods and instance methods, we'll cover those next.

102 Chapter 2: Object Orientation

Using a Variable or Array Element That Is Uninitialized
and Unassigned

Java gives us the option of initializing a declared variable or leaving it
uninitialized. When we attempt to use the uninitialized variable, we can get
different behavior depending on what type of variable or array we are dealing
with (primitives or objects). The behavior also depends on the level (scope) at
which we are declaring our variable. An instance variable is declared within the
class but outside any method or constructor, whereas a local variable is declared
within a method (or in the argument list of the method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what you
call them. Although you can leave a local variable uninitialized, the compiler
complains if you try to use a local variable before initializing it with a value, as
we shall see.

Primitive and Object Type Instance Variables
Instance variables (also called member variables) are variables defined at the
class level. That means the variable declaration is not made within a method,
constructor, or any other initializer block. Instance variables are initialized to a
default value each time a new instance is created, although they may be given
an explicit value after the object's super-constructors have completed. Table 3-1
lists the default values for primitive and object types.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3 & 7.6) 203

Variable Type Default Value

Object reference null (not referencing any object)

byte, short, int, long 0

float, double 0.0

boolean false

char '\u0000'

 TABLE 3-1 Default Values for Primitives and Reference Types

Primitive Instance Variables
In the following example, the integer year is defined as a class member because it is
within the initial curly braces of the class and not within a method's curly braces:

public class BirthDate {
 int year; // Instance variable
 public static void main(String [] args) {
 BirthDate bd = new BirthDate();
 bd.showYear();
 }
 public void showYear() {
 System.out.println("The year is " + year);
 }
}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

It's a good idea to initialize all your variables, even if you're assigning them
with the default value. Your code will be easier to read; programmers who
have to maintain your code (after you win the lottery and move to Tahiti) will
be grateful.

Object Reference Instance Variables
When compared with uninitialized primitive variables, object references that aren't
initialized are a completely different story. Let's look at the following code:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 System.out.println("The title is " + b.getTitle());
 }
}

204 Chapter 3: Assignments

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3 & 7.6) 205

This code will compile fine. When we run it, the output is

The title is null

The title variable has not been explicitly initialized with a String assignment,
so the instance variable value is null. Remember that null is not the same as an
empty String (""). A null value means the reference variable is not referring to any
object on the heap. The following modification to the Book code runs into trouble:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 String t = s.toLowerCase(); // Runtime Exception!
 }
}

When we try to run the Book class, the JVM will produce something like this:

Exception in thread "main" java.lang.NullPointerException
 at Book.main(Book.java:9)

We get this error because the reference variable title does not point (refer) to
an object. We can check to see whether an object has been instantiated by using the
keyword null, as the following revised code shows:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 if (s != null) {
 String t = s.toLowerCase();
 }

 }
}

The preceding code checks to make sure the object referenced by the variable s is
not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of null. In the preceding code, for example, you look at the
instance variable declaration for title, see that there's no explicit initialization,
recognize that the title variable will be given the default value of null, and then
realize that the variable s will also have a value of null. Remember, the value of s is
a copy of the value of title (as returned by the getTitle() method), so if title is a
null reference, s will be too.

Array Instance Variables
Later in this chapter we'll be taking a very detailed look at declaring, constructing,
and initializing arrays and multidimensional arrays. For now, we're just going to look
at the rule for an array element's default values.

An array is an object; thus, an array instance variable that's declared but not
explicitly initialized will have a value of null, just as any other object reference
instance variable. But…if the array is initialized, what happens to the elements
contained in the array? All array elements are given their default values—the same
default values that elements of that type get when they're instance variables.
The bottom line: Array elements are always, always, always given default values,
regardless of where the array itself is declared or instantiated.

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the
array year will contain 100 integers that all equal zero by default:

public class BirthDays {
 static int [] year = new int[100];
 public static void main(String [] args) {
 for(int i=0;i<100;i++)
 System.out.println("year[" + i + "] = " + year[i]);
 }
}

When the preceding code runs, the output indicates that all 100 integers in the
array equal zero.

206 Chapter 3: Assignments

Local (Stack, Automatic) Primitives and Objects (Exam Objectives 1.3 and 7.6) 207

Local (Stack, Automatic) Primitives and Objects

Local variables are defined within a method, and they include a method's parameters.

Local Primitives
In the following time travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method.

public class TimeTravel {
 public static void main(String [] args) {
 int year = 2050;
 System.out.println("The year is " + year);
 }
}

Local variables, including primitives, always, always, always must be initialized
before you attempt to use them (though not necessarily on the same line of code).
Java does not give local variables a default value; you must explicitly initialize them
with a value, as in the preceding example. If you try to use an uninitialized primitive
in your code, you'll get a compiler error:

public class TimeTravel {
 public static void main(String [] args) {
 int year; // Local variable (declared but not initialized)
 System.out.println("The year is " + year); // Compiler error
 }
}

“Automatic” is just another term for “local variable.” It does not mean
the automatic variable is automatically assigned a value! The opposite is true. An
automatic variable must be assigned a value in the code, or the compiler will complain.

Initializing an Array
Initializing an array means putting things into it. The "things" in the array are the
array's elements, and they're either primitive values (2, x, false, and so on), or
objects referred to by the reference variables in the array. If you have an array of
objects (as opposed to primitives), the array doesn't actually hold the objects, just as
any other nonprimitive variable never actually holds the object, but instead holds
a reference to the object. But we talk about arrays as, for example, "an array of five
strings," even though what we really mean is, "an array of five references to String
objects." Then the big question becomes whether or not those references are actually
pointing (oops, this is Java, we mean referring) to real String objects, or are simply
null. Remember, a reference that has not had an object assigned to it is a null
reference. And if you try to actually use that null reference by, say, applying the dot
operator to invoke a method on it, you'll get the infamous NullPointerException.

The individual elements in the array can be accessed with an index number. The
index number always begins with zero, so for an array of ten objects the index numbers
will run from 0 through 9. Suppose we create an array of three Animals as follows:

Animal [] pets = new Animal[3];

We have one array object on the heap, with three null references of type Animal,
but we don't have any Animal objects. The next step is to create some Animal
objects and assign them to index positions in the array referenced by pets:

pets[0] = new Animal();
pets[1] = new Animal();
pets[2] = new Animal();

This code puts three new Animal objects on the heap and assigns them to the
three index positions (elements) in the pets array.

224 Chapter 3: Assignments

Look for code that tries to access an out-of-range array index. For
example, if an array has three elements, trying to access the [3] element will raise an
ArrayIndexOutOfBoundsException, because in an array of three elements, the
legal index values are 0, 1, and 2. You also might see an attempt to use a negative number
as an array index. The following are examples of legal and illegal array access attempts.
Be sure to recognize that these cause runtime exceptions and not compiler errors!

A two-dimensional array (an array of arrays) can be initialized as follows:

int[][] scores = new int[3][];
// Declare and create an array holding three references
// to int arrays

scores[0] = new int[4];
// the first element in the scores array is an int array
// of four int elements

scores[1] = new int[6];
// the second element in the scores array is an int array
// of six int elements

scores[2] = new int[1];
// the third element in the scores array is an int array
// of one int element

Initializing Elements in a Loop
Array objects have a single public variable, length that gives you the number of
elements in the array. The last index value, then, is always one less than the length.
For example, if the length of an array is 4, the index values are from 0 through 3.
Often, you'll see array elements initialized in a loop as follows:

Initializing an Array (Exam Objective 1.3) 225

Nearly all of the exam questions list both runtime exception and compiler
error as possible answers.

int[] x = new int[5];
x[4] = 2; // OK, the last element is at index 4
x[5] = 3; // Runtime exception. There is no element at index
5!

int[] z = new int[2];
int y = -3;
z[y] = 4; // Runtime exception. y is a negative number

These can be hard to spot in a complex loop, but that’s where you’re
most likely to see array index problems in exam questions.

226 Chapter 3: Assignments

 Dog[] myDogs = new Dog[6]; // creates an array of 6
 // Dog references

for(int x = 0; x < myDogs.length; x++) {
 myDogs[x] = new Dog(); // assign a new Dog to the
 // index position x
}

The length variable tells us how many elements the array holds, but it does not
tell us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line
You can use two different array-specific syntax shortcuts to both initialize (put
explicit values into an array's elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement as follows:

1. int x = 9;
2. int[] dots = {6,x,8};

Line 2 in the preceding code does four things:

■ Declares an int array reference variable named dots.

■ Creates an int array with a length of three (three elements).

■ Populates the array's elements with the values 6, 9, and 8.

■ Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of comma-separated
items between the curly braces. The code is functionally equivalent to the following
longer code:

int[] dots;
dots = new int[3];
int x = 9;
dots[0] = 6;
dots[1] = x;
dots[2] = 8;

puppy

myDogs

Dog puppy = new Dog (”Frodo”);
Dog[] myDogs = {puppy, new Dog(”Clover”), new Dog(”Aiko”)};

0 1 2

Frodo
Clover

Aiko

Dog object
Dog object

Dog object
Dog reference
variable

Dog[]array
reference variable

Four objects are created:
1 Dog object referenced by puppy and by myDogs[0]
1 Dog[] array referenced by myDogs
2 Dog object referenced by myDogs[1]and myDogs[2]

Picture demonstrates the result of the following code:

Dog[]array object

The heap

This begs the question, "Why would anyone use the longer way?" One reason
come to mind. You might not know—at the time you create the array—the values
that will be assigned to the array's elements. This array shortcut alone (combined
with the stimulating prose) is worth the price of this book.

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo");
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable myDogs,
with a length of three elements. It assigns a previously created Dog object (as-
signed to the reference variable puppy) to the first element in the array. It also
creates two new Dog objects (Clover and Aiko), and adds them to the last two
Dog reference variable elements in the myDogs array. Figure 3-4 shows the result.

Initializing an Array (Exam Objective 1.3) 227

 FIGURE 3-4

Declaring,
constructing, and
initializing an array
of objects

 Which two are true about the value of mask and the value of count at line 10?
(Choose two.)

 A. mask is 0

 B. mask is 1

 C. mask is 2

 D. mask is 10

 E. mask is greater than 10

 F. count is 0

 G. count is greater than 0

 10. Given:

 3. interface Vessel { }
 4. interface Toy { }
 5. class Boat implements Vessel { }
 6. class Speedboat extends Boat implements Toy { }
 7. public class Tree {
 8. public static void main(String[] args) {
 9. String s = "0";
10. Boat b = new Boat();
11. Boat b2 = new Speedboat();
12. Speedboat s2 = new Speedboat();
13. if((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out.println(s);
16. }
17. }

 What is the result?

 A. 0

 B. 01

 C. 02

 D. 012

 E. Compilation fails

 F. An exception is thrown at runtime

318 Chapter 4: Operators

SELF TEST ANSWERS
 1. Given:

class Hexy {
 public static void main(String[] args) {
 Integer i = 42;
 String s = (i<40)?"life":(i>50)?"universe":"everything";
 System.out.println(s);
 }
}

 What is the result?
 A. null

 B. life

 C. universe

 D. everything

 E. Compilation fails
 F. An exception is thrown at runtime

Answer:
 ✓ D is correct. This is a ternary nested in a ternary with a little unboxing thrown in.

Both of the ternary expressions are false.

 A, B, C, E, and F are incorrect based on the above.
(Objective 7.6)

 2. Given:

 1. class Comp2 {
 2. public static void main(String[] args) {
 3. float f1 = 2.3f;
 4. float[][] f2 = {{42.0f}, {1.7f, 2.3f}, {2.6f, 2.7f}};
 5. float[] f3 = {2.7f};
 6. Long x = 42L;
 7. // insert code here
 8. System.out.println("true");
 9. }
10. }

Self Test Answers 319

 And the following five code fragments:

F1. if(f1 == f2)
F2. if(f1 == f2[2][1])
F3. if(x == f2[0][0])
F4. if(f1 == f2[1,1])
F5. if(f3 == f2[2])

 What is true?
 A. One of them will compile, only one will be true
 B. Two of them will compile, only one will be true
 C. Two of them will compile, two will be true
 D. Three of them will compile, only one will be true
 E. Three of them will compile, exactly two will be true
 F. Three of them will compile, exactly three will be true

Answer:

 ✓ D is correct. Fragments F2, F3, and F5 will compile, and only F3 is true.
 A, B, C, E, and F are incorrect. F1 is incorrect because you can’t compare a primitive to

an array. F4 is incorrect syntax to access an element of a two-dimensional array.
(Objective 7.6)

 3. Given:

class Fork {
 public static void main(String[] args) {
 if(args.length == 1 | args[1].equals("test")) {
 System.out.println("test case");
 } else {
 System.out.println("production " + args[0]);
 }
 }
}

 And the command-line invocation:

java Fork live2

 What is the result?
 A. test case

 B. production live2

320 Chapter 4: Operators

 C. test case live2

 D. Compilation fails
 E. An exception is thrown at runtime

Answer:

 ✓ E is correct. Because the short circuit (||) is not used, both operands are evaluated. Since
args[1] is past the args array bounds, an ArrayIndexOutOfBoundsException is thrown.

 A, B, C, and D are incorrect based on the above. (Objective 7.6)

 4. Given:

class Feline {
 public static void main(String[] args) {
 Long x = 42L;
 Long y = 44L;
 System.out.print(" " + 7 + 2 + " ");
 System.out.print(foo() + x + 5 + " ");
 System.out.println(x + y + foo());
 }
 static String foo() { return "foo"; }
}

 What is the result?
 A. 9 foo47 86foo

 B. 9 foo47 4244foo

 C. 9 foo425 86foo

 D. 9 foo425 4244foo

 E. 72 foo47 86foo

 F. 72 foo47 4244foo

 G. 72 foo425 86foo

 H. 72 foo425 4244foo
 I. Compilation fails

Answer:

 ✓ G is correct. Concatenation runs from left to right, and if either operand is a String,
the operands are concatenated. If both operands are numbers they are added together.
Unboxing works in conjunction with concatenation.

 A, B, C, D, E, F, H, and I are incorrect based on the above. (Objective 7.6)

Self Test Answers 321

 5. Place the fragments into the code to produce the output 33. Note, you must use each fragment
exactly once.

 CODE:

class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x ___ ___;
 ___ ___ ___;
 ___ ___ ___;
 ___ ___ ___;

 System.out.println(x);
 }
}

 FRAGMENTS:

 y y y y

 y x x

 -= *= *= *=

Answer:

class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x *= x;
 y *= y;
 y *= y;
 x -= y;

 System.out.println(x);
 }
}

 Yeah, we know it’s kind of puzzle-y, but you might encounter something like it on the real exam.

 (Objective 7.6)

322 Chapter 4: Operators

5
Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

 Use if and switch Statements

Develop for, do, and while Loops
 Use break and continue Statements

Develop Code with Assertions

Use try, catch, and finally Statements

 State the Effects of Exceptions

Recognize Common Exceptions

✓ Two-Minute Drill

 Q&A Self Test

98% of what you're likely to do with generics is simply declare and use type safe
collections, including using (and passing) them as arguments. But now you know
much more (but by no means everything) about the way generics works.

Generic Declarations (Exam Objectives 6.3 and 6.4) 629

If you REALLY want to get ridiculous (or fi red), you can declare a class
with a name that is the same as the type parameter placeholder:

class X { public <X> X(X x) { } }

Yes, this works. The X that is the constructor name has no relationship
to the <X> type declaration, which has no relationship to the constructor
argument identifi er, which is also, of course, X. The compiler is able to parse this
and treat each of the different uses of X independently. So there is no naming confl ict
between class names, type parameter placeholders, and variable identifi ers.

One of the most common mistakes programmers make when creating
generic classes or methods is to use a <?> in the wildcard syntax rather than a type
variable <T>, <E>, and so on. This code might look right, but isn’t:

public class NumberHolder<? extends Number> { }

While the question mark works when declaring a reference for a variable,
it does NOT work for generic class and method declarations. This code is not legal:

public class NumberHolder<?> { ? aNum; } // NO!

But if you replace the <?> with a legal identifi er, you’re good:

public class NumberHolder<T> { T aNum; } // Yes

630 Chapter 7: Generics and Collections

If this was clear and easy for you, that's excellent. If it was…painful…just know
that adding generics to the Java language very nearly caused a revolt among some
of the most experienced Java developers. Most of the outspoken critics are simply
unhappy with the complexity, or aren't convinced that gaining type safe collections
is worth the ten million little rules you have to learn now. It's true that with Java 5,
learning Java just got harder. But trust us…we've never seen it take more than two
days to "get" generics. That's 48 consecutive hours.

CERTIFICATION SUMMARY
We began with a quick review of the toString() method. The toString()
method is automatically called when you ask System.out.println() to print an
object—you override it to return a String of meaningful data about your objects.

Next we reviewed the purpose of == (to see if two reference variables refer to
the same object) and the equals() method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals()—you may not be
able to find the object in a collection. We discussed a little bit about how to write a good
equals() method—don't forget to use instanceof and refer to the object's significant
attributes. We reviewed the contracts for overriding equals() and hashCode().
We learned about the theory behind hashcodes, the difference between legal,
appropriate, and efficient hashcoding. We also saw that even though wildly
inefficient, it's legal for a hashCode() method to always return the same value.

Next we turned to collections, where we learned about Lists, Sets, and Maps, and
the difference between ordered and sorted collections. We learned the key attributes
of the common collection classes, and when to use which.

We covered the ins and outs of the Collections and Arrays classes: how to sort,
and how to search. We learned about converting arrays to Lists and back again.

Finally we tackled generics. Generics let you enforce compile-time type-safety
on collections or other classes. Generics help assure you that when you get an item
from a collection it will be of the type you expect, with no casting required. You
can mix legacy code with generics code, but this can cause exceptions. The rules for
polymorphism change when you use generics, although by using wildcards you can
still create polymorphic collections. Some generics declarations allow reading of a
collection, but allow very limited updating of the collection.

All in all, one fascinating chapter.

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Overriding hashCode() and equals() (Objective 6.2)

❑ equals(), hashCode(), and toString() are public.

❑ Override toString() so that System.out.println() or other
methods can see something useful, like your object's state.

❑ Use == to determine if two reference variables refer to the same object.

❑ Use equals() to determine if two objects are meaningfully equivalent.

❑ If you don't override equals(), your objects won't be useful hashing keys.

❑ If you don't override equals(), different objects can't be considered equal.

❑ Strings and wrappers override equals() and make good hashing keys.

❑ When overriding equals(), use the instanceof operator to be sure you're
evaluating an appropriate class.

❑ When overriding equals(), compare the objects' significant attributes.

❑ Highlights of the equals() contract:

 ❑ Reflexive: x.equals(x) is true.

 ❑ Symmetric: If x.equals(y) is true, then y.equals(x) must be true.

 ❑ Transitive: If x.equals(y) is true, and y.equals(z) is true,
then z.equals(x) is true.

 ❑ Consistent: Multiple calls to x.equals(y) will return the same result.

 ❑ Null: If x is not null, then x.equals(null) is false.

❑ If x.equals(y) is true, then x.hashCode() == y.hashCode() is true.

❑ If you override equals(), override hashCode().

❑ HashMap, HashSet, Hashtable, LinkedHashMap, & LinkedHashSet use hashing.

❑ An appropriate hashCode() override sticks to the hashCode() contract.

❑ An efficient hashCode() override distributes keys evenly across its buckets.

❑ An overridden equals() must be at least as precise as its hashCode() mate.

❑ To reiterate: if two objects are equal, their hashcodes must be equal.

❑ It's legal for a hashCode() method to return the same value for all instances
(although in practice it's very inefficient).

Two-Minute Drill 631

✓

632 Chapter 7: Generics and Collections

❑ Highlights of the hashCode() contract:

 ❑ Consistent: multiple calls to x.hashCode() return the same integer.

 ❑ If x.equals(y) is true, x.hashCode() == y.hashCode() is true.

 ❑ If x.equals(y) is false, then x.hashCode() == y.hashCode() can
be either true or false, but false will tend to create better efficiency.

❑ transient variables aren't appropriate for equals() and hashCode().

Collections (Objective 6.1)

❑ Common collection activities include adding objects, removing objects, veri-
fying object inclusion, retrieving objects, and iterating.

❑ Three meanings for "collection":

 ❑ collection Represents the data structure in which objects are stored

 ❑ Collection java.util interface from which Set and List extend

 ❑ Collections A class that holds static collection utility methods

❑ Four basic flavors of collections include Lists, Sets, Maps, Queues:

 ❑ Lists of things Ordered, duplicates allowed, with an index.

 ❑ Sets of things May or may not be ordered and/or sorted; duplicates
 not allowed.

 ❑ Maps of things with keys May or may not be ordered and/or sorted;
 duplicate keys are not allowed.

 ❑ Queues of things to process Ordered by FIFO or by priority.

❑ Four basic sub-flavors of collections Sorted, Unsorted, Ordered, Unordered.

 ❑ Ordered Iterating through a collection in a specific, non-random order.

 ❑ Sorted Iterating through a collection in a sorted order.

❑ Sorting can be alphabetic, numeric, or programmer-defined.

Key Attributes of Common Collection Classes (Objective 6.1)

❑ ArrayList: Fast iteration and fast random access.

❑ Vector: It's like a slower ArrayList, but it has synchronized methods.

❑ LinkedList: Good for adding elements to the ends, i.e., stacks and queues.

❑ HashSet: Fast access, assures no duplicates, provides no ordering.

❑ LinkedHashSet: No duplicates; iterates by insertion order.

❑ TreeSet: No duplicates; iterates in sorted order.

❑ HashMap: Fastest updates (key/values); allows one null key, many
null values.

❑ Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed.

❑ LinkedHashMap: Faster iterations; iterates by insertion order or last accessed;
allows one null key, many null values.

❑ TreeMap: A sorted map.

❑ PriorityQueue: A to-do list ordered by the elements' priority.

Using Collection Classes (Objective 6.3)

❑ Collections hold only Objects, but primitives can be autoboxed.

❑ Iterate with the enhanced for, or with an Iterator via hasNext() & next().

❑ hasNext() determines if more elements exist; the Iterator does NOT move.

❑ next() returns the next element AND moves the Iterator forward.

❑ To work correctly, a Map's keys must override equals() and hashCode().

❑ Queues use offer() to add an element, poll() to remove the head of the
queue, and peek() to look at the head of a queue.

❑ As of Java 6 TreeSets and TreeMaps have new navigation methods like
floor() and higher().

❑ You can create/extend "backed" sub-copies of TreeSets and TreeMaps.

Sorting and Searching Arrays and Lists (Objective 6.5)

❑ Sorting can be in natural order, or via a Comparable or many Comparators.

❑ Implement Comparable using compareTo(); provides only one sort order.

❑ Create many Comparators to sort a class many ways; implement compare().

❑ To be sorted and searched, a List's elements must be comparable.

❑ To be searched, an array or List must first be sorted.

Utility Classes: Collections and Arrays (Objective 6.5)

❑ Both of these java.util classes provide

 ❑ A sort() method. Sort using a Comparator or sort using natural order.

 ❑ A binarySearch() method. Search a pre-sorted array or List.

Two-Minute Drill 633

634 Chapter 7: Generics and Collections

❑ Arrays.asList() creates a List from an array and links them together.

❑ Collections.reverse() reverses the order of elements in a List.

❑ Collections.reverseOrder() returns a Comparator that sorts in reverse.

❑ Lists and Sets have a toArray() method to create arrays.

Generics (Objective 6.4)

❑ Generics let you enforce compile-time type safety on Collections (or other
classes and methods declared using generic type parameters).

❑ An ArrayList<Animal> can accept references of type Dog, Cat, or any other
subtype of Animal (subclass, or if Animal is an interface, implementation).

❑ When using generic collections, a cast is not needed to get (declared type) el-
ements out of the collection. With non-generic collections, a cast is required:

 List<String> gList = new ArrayList<String>();
 List list = new ArrayList();
 // more code
 String s = gList.get(0); // no cast needed
 String s = (String)list.get(0); // cast required

❑ You can pass a generic collection into a method that takes a non-generic col-
lection, but the results may be disastrous. The compiler can't stop the method
from inserting the wrong type into the previously type safe collection.

❑ If the compiler can recognize that non-type-safe code is potentially endanger-
ing something you originally declared as type-safe, you will get a compiler
warning. For instance, if you pass a List<String> into a method declared as

 void foo(List aList) { aList.add(anInteger); }

You'll get a warning because add() is potentially "unsafe".

❑ "Compiles without error" is not the same as "compiles without warnings."
A compilation warning is not considered a compilation error or failure.

❑ Generic type information does not exist at runtime—it is for compile-time
safety only. Mixing generics with legacy code can create compiled code that
may throw an exception at runtime.

❑ Polymorphic assignments applies only to the base type, not the generic type
parameter. You can say

 List<Animal> aList = new ArrayList<Animal>(); // yes

 You can't say

 List<Animal> aList = new ArrayList<Dog>(); // no

❑ The polymorphic assignment rule applies everywhere an assignment can be
made. The following are NOT allowed:

 void foo(List<Animal> aList) { } // cannot take a List<Dog>

List<Animal> bar() { } // cannot return a List<Dog>

❑ Wildcard syntax allows a generic method, accept subtypes (or supertypes) of
the declared type of the method argument:

 void addD(List<Dog> d) {} // can take only <Dog>

void addD(List<? extends Dog>) {} // take a <Dog> or <Beagle>

❑ The wildcard keyword extends is used to mean either "extends" or "imple-
ments." So in <? extends Dog>, Dog can be a class or an interface.

❑ When using a wildcard, List<? extends Dog>, the collection can be
accessed but not modified.

❑ When using a wildcard, List<?>, any generic type can be assigned to the
reference, but for access only, no modifications.

❑ List<Object> refers only to a List<Object>, while List<?> or
List<? extends Object> can hold any type of object, but for access only.

❑ Declaration conventions for generics use T for type and E for element:

 public interface List<E> // API declaration for List

boolean add(E o) // List.add() declaration

❑ The generics type identifier can be used in class, method, and variable
declarations:

 class Foo<t> { } // a class
 T anInstance; // an instance variable
 Foo(T aRef) {} // a constructor argument
 void bar(T aRef) {} // a method argument
 T baz() {} // a return type

 The compiler will substitute the actual type.

❑ You can use more than one parameterized type in a declaration:

 public class UseTwo<T, X> { }

❑ You can declare a generic method using a type not defined in the class:

 public <T> void makeList(T t) { }

 is NOT using T as the return type. This method has a void return type, but
to use T within the method's argument you must declare the <T>, which
happens before the return type.

Two-Minute Drill 635

SELF TEST
 1. Given:

public static void main(String[] args) {

 // INSERT DECLARATION HERE
 for (int i = 0; i <= 10; i++) {
 List<Integer> row = new ArrayList<Integer>();
 for (int j = 0; j <= 10; j++)
 row.add(i * j);
 table.add(row);
 }
 for (List<Integer> row : table)
 System.out.println(row);
 }

 Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

 A. List<List<Integer>> table = new List<List<Integer>>();

 B. List<List<Integer>> table = new ArrayList<List<Integer>>();

 C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();

 D. List<List, Integer> table = new List<List, Integer>();

 E. List<List, Integer> table = new ArrayList<List, Integer>();

 F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();

 G. None of the above

 2. Which statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose all that apply.)

 A. If the equals() method returns true, the hashCode() comparison == might return false

 B. If the equals() method returns false, the hashCode() comparison == might return true

 C. If the hashCode() comparison == returns true, the equals() method must return true

 D. If the hashCode() comparison == returns true, the equals() method might return true

 E. If the hashCode() comparison != returns true, the equals() method might return true

636 Chapter 7: Generics and Collections

 3. Given:

public static void before() {
 Set set = new TreeSet();
 set.add("2");
 set.add(3);
 set.add("1");
 Iterator it = set.iterator();
 while (it.hasNext())
 System.out.print(it.next() + " ");
}

 Which statements are true?

 A. The before() method will print 1 2

 B. The before() method will print 1 2 3

 C. The before() method will print three numbers, but the order cannot be determined

 D. The before() method will not compile

 E. The before() method will throw an exception at runtime

 4. Given:

import java.util.*;
class MapEQ {
 public static void main(String[] args) {
 Map<ToDos, String> m = new HashMap<ToDos, String>();
 ToDos t1 = new ToDos("Monday");
 ToDos t2 = new ToDos("Monday");
 ToDos t3 = new ToDos("Tuesday");
 m.put(t1, "doLaundry");
 m.put(t2, "payBills");
 m.put(t3, "cleanAttic");
 System.out.println(m.size());
 }
}
class ToDos{
 String day;
 ToDos(String d) { day = d; }
 public boolean equals(Object o) {
 return ((ToDos)o).day == this.day;
 }
 // public int hashCode() { return 9; }
}

Self Test 637

638 Chapter 7: Generics and Collections

 Which is correct? (Choose all that apply.)

 A. As the code stands it will not compile

 B. As the code stands the output will be 2

 C. As the code stands the output will be 3

 D. If the hashCode() method is uncommented the output will be 2

 E. If the hashCode() method is uncommented the output will be 3

 F. If the hashCode() method is uncommented the code will not compile

 5. Given:

12. public class AccountManager {
13. private Map accountTotals = new HashMap();
14. private int retirementFund;
15.
16. public int getBalance(String accountName) {
17. Integer total = (Integer) accountTotals.get(accountName);
18. if (total == null)
19. total = Integer.valueOf(0);
20. return total.intValue();
21. }
23. public void setBalance(String accountName, int amount) {
24. accountTotals.put(accountName, Integer.valueOf(amount));
25. }

26. }

 This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)

 A. Replace line 13 with
 private Map<String, int> accountTotals = new HashMap<String, int>();

 B. Replace line 13 with
 private Map<String, Integer> accountTotals = new HashMap<String, Integer>();

 C. Replace line 13 with
 private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

 D. Replace lines 17–20 with
 int total = accountTotals.get(accountName);
 if (total == null)
 total = 0;

 return total;

 E. Replace lines 17–20 with
 Integer total = accountTotals.get(accountName);
 if (total == null)
 total = 0;
 return total;

 F. Replace lines 17–20 with
 return accountTotals.get(accountName);

 G. Replace line 24 with
 accountTotals.put(accountName, amount);

 H. Replace line 24 with
 accountTotals.put(accountName, amount.intValue());

 6. Given:

interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
}

 Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

 A. Change the Carnivore interface to
 interface Carnivore<E extends Plant> extends Hungry<E> {}

 B. Change the Herbivore interface to
 interface Herbivore<E extends Animal> extends Hungry<E> {}

 C. Change the Sheep class to
 class Sheep extends Animal implements Herbivore<Plant> {
 public void munch(Grass x) {}
 }

 D. Change the Sheep class to
 class Sheep extends Plant implements Carnivore<Wolf> {
 public void munch(Wolf x) {}

 }

Self Test 639

640 Chapter 7: Generics and Collections

 E. Change the Wolf class to
 class Wolf extends Animal implements Herbivore<Grass> {
 public void munch(Grass x) {}
 }

 F. No changes are necessary

 7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

 A. java.util.HashSet

 B. java.util.LinkedHashSet

 C. java.util.List

 D. java.util.ArrayList

 E. java.util.Vector

 F. java.util.PriorityQueue

 8. Given a method declared as

 public static <E extends Number> List<E> process(List<E> nums)

 A programmer wants to use this method like this

 // INSERT DECLARATIONS HERE

 output = process(input);

 Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow the
code to compile? (Choose all that apply.)

 A. ArrayList<Integer> input = null;
ArrayList<Integer> output = null;

 B. ArrayList<Integer> input = null;
List<Integer> output = null;

 C. ArrayList<Integer> input = null;
List<Number> output = null;

 D. List<Number> input = null;
ArrayList<Integer> output = null;

 E. List<Number> input = null;
List<Number> output = null;

 F. List<Integer> input = null;
List<Integer> output = null;

 G. None of the above

 9. Given the proper import statement(s), and

13. PriorityQueue<String> pq = new PriorityQueue<String>();
14. pq.add("2");
15. pq.add("4");
16. System.out.print(pq.peek() + " ");
17. pq.offer("1");
18. pq.add("3");
19. pq.remove("1");
20. System.out.print(pq.poll() + " ");
21. if(pq.remove("2")) System.out.print(pq.poll() + " ");
22. System.out.println(pq.poll() + " " + pq.peek());

 What is the result?

 A. 2 2 3 3

 B. 2 2 3 4

 C. 4 3 3 4

 D. 2 2 3 3 3

 E. 4 3 3 3 3

 F. 2 2 3 3 4

 G. Compilation fails

 H. An exception is thrown at runtime

 10. Given:

 3. import java.util.*;
 4. public class Mixup {
 5. public static void main(String[] args) {

Self Test 641

 6. Object o = new Object();
 7. // insert code here
 8. s.add("o");
 9. s.add(o);
10. }
11. }

 And these three fragments:

I. Set s = new HashSet();
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();

 When fragments I, II, or III are inserted, independently, at line 7, which are true?
(Choose all that apply.)

 A. Fragment I compiles

 B. Fragment II compiles

 C. Fragment III compiles

 D. Fragment I executes without exception

 E. Fragment II executes without exception

 F. Fragment III executes without exception

 11. Given:

 3. import java.util.*;
 4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
 7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
 8. // insert code here
 9. }
10. public class TurtleTest {
11. public static void main(String[] args) {
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
13. t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
14. System.out.println(t.size());
15. }
16. }

642 Chapter 7: Generics and Collections

 And these two fragments:

I. public int hashCode() { return size/5; }
II. // no hashCode method declared

 If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

 A. If fragment I is inserted, the output is 2

 B. If fragment I is inserted, the output is 3

 C. If fragment II is inserted, the output is 2

 D. If fragment II is inserted, the output is 3

 E. If fragment I is inserted, compilation fails

 F. If fragment II is inserted, compilation fails

 12. Given the proper import statement(s), and:

13. TreeSet<String> s = new TreeSet<String>();
14. TreeSet<String> subs = new TreeSet<String>();
15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.
17. subs = (TreeSet)s.subSet("b", true, "d", true);
18. s.add("g");
19. s.pollFirst();
20. s.pollFirst();
21. s.add("c2");
22. System.out.println(s.size() +" "+ subs.size());

 Which are true? (Choose all that apply.)

 A. The size of s is 4

 B. The size of s is 5

 C. The size of s is 7

 D. The size of subs is 1

 E. The size of subs is 2

 F. The size of subs is 3

 G. The size of subs is 4

 H. An exception is thrown at runtime

Self Test 643

644 Chapter 7: Generics and Collections

 13. Given:

 3. import java.util.*;
 4. public class Magellan {
 5. public static void main(String[] args) {
 6. TreeMap<String, String> myMap = new TreeMap<String, String>();
 7. myMap.put("a", "apple"); myMap.put("d", "date");
 8. myMap.put("f", "fig"); myMap.put("p", "pear");
 9. System.out.println("1st after mango: " + // sop 1
10. myMap.higherKey("f"));
11. System.out.println("1st after mango: " + // sop 2
12. myMap.ceilingKey("f"));
13. System.out.println("1st after mango: " + // sop 3
14. myMap.floorKey("f"));
15. SortedMap<String, String> sub = new TreeMap<String, String>();
16. sub = myMap.tailMap("f");
17. System.out.println("1st after mango: " + // sop 4
18. sub.firstKey());
19. }
20. }

 Which of the System.out.println statements will produce the output 1st after mango: p?
(Choose all that apply.)

 A. sop 1

 B. sop 2

 C. sop 3

 D. sop 4

 E. None; compilation fails

 F. None; an exception is thrown at runtime

 14. Given:

 3. import java.util.*;
 4. class Business { }
 5. class Hotel extends Business { }
 6. class Inn extends Hotel { }
 7. public class Travel {
 8. ArrayList<Hotel> go() {
 9. // insert code here
10. }
11. }

Self Test 645

 Which, inserted independently at line 9, will compile? (Choose all that apply.)

 A. return new ArrayList<Inn>();

 B. return new ArrayList<Hotel>();

 C. return new ArrayList<Object>();

 D. return new ArrayList<Business>();

 15. Given:

 3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
 6. public static void main(String[] args) {
 7. TreeSet<Integer> i = new TreeSet<Integer>();
 8. TreeSet<Dog> d = new TreeSet<Dog>();
 9.
10. d.add(new Dog(1)); d.add(new Dog(2)); d.add(new Dog(1));
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

 What is the result?

 A. 1 2

 B. 2 2

 C. 2 3

 D. 3 2

 E. 3 3

 F. Compilation fails

 G. An exception is thrown at runtime

 16. Given:

 3. import java.util.*;
 4. public class GeoCache {
 5. public static void main(String[] args) {
 6. String[] s = {"map", "pen", "marble", "key"};
 7. Othello o = new Othello();

646 Chapter 7: Generics and Collections

 8. Arrays.sort(s,o);
 9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output will contain a 1

 C. The output will contain a 2

 D. The output will contain a –1

 E. An exception is thrown at runtime

 F. The output will contain "key map marble pen"

 G. The output will contain "pen marble map key"

SELF TEST ANSWERS
 1. Given:

public static void main(String[] args) {
 // INSERT DECLARATION HERE
 for (int i = 0; i <= 10; i++) {
 List<Integer> row = new ArrayList<Integer>();
 for (int j = 0; j <= 10; j++)
 row.add(i * j);
 table.add(row);
 }
 for (List<Integer> row : table)
 System.out.println(row);
 }

 Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

 A. List<List<Integer>> table = new List<List<Integer>>();

 B. List<List<Integer>> table = new ArrayList<List<Integer>>();

 C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();

 D. List<List, Integer> table = new List<List, Integer>();

 E. List<List, Integer> table = new ArrayList<List, Integer>();

 F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();

 G. None of the above

Answer:

 ✓ B is correct.
 A is incorrect because List is an interface, so you can't say new List() regardless of

any generic types. D, E, and F are incorrect because List only takes one type parameter
(a Map would take two, not a List). C is tempting, but incorrect. The type argument
<List<Integer>> must be the same for both sides of the assignment, even though the
constructor new ArrayList() on the right side is a subtype of the declared type List on
the left. (Objective 6.4)

Self Test Answers 647

648 Chapter 7: Generics and Collections

 2. Which statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose all that apply.)

 A. If the equals() method returns true, the hashCode() comparison == might return false

 B. If the equals() method returns false, the hashCode() comparison == might return true

 C. If the hashCode() comparison == returns true, the equals() method must return true

 D. If the hashCode() comparison == returns true, the equals() method might return true

 E. If the hashCode() comparison != returns true, the equals() method might return true

Answer:

 ✓ B and D. B is true because often two dissimilar objects can return the same hashcode
value. D is true because if the hashCode() comparison returns ==, the two objects might
or might not be equal.

 A, C, and E are incorrect. C is incorrect because the hashCode() method is very flexible
in its return values, and often two dissimilar objects can return the same hash code value.
A and E are a negation of the hashCode() and equals() contract. (Objective 6.2)

 3. Given:
public static void before() {
 Set set = new TreeSet();
 set.add("2");
 set.add(3);
 set.add("1");
 Iterator it = set.iterator();
 while (it.hasNext())
 System.out.print(it.next() + " ");
}

 Which statements are true?
 A. The before() method will print 1 2
 B. The before() method will print 1 2 3
 C. The before() method will print three numbers, but the order cannot be determined
 D. The before() method will not compile
 E. The before() method will throw an exception at runtime

Answer:

 ✓ E is correct. You can't put both Strings and ints into the same TreeSet. Without generics,
the compiler has no way of knowing what type is appropriate for this TreeSet, so it allows
everything to compile. At runtime, the TreeSet will try to sort the elements as they're
added, and when it tries to compare an Integer with a String it will throw a
ClassCastException. Note that although the before() method does not use generics,
it does use autoboxing. Watch out for code that uses some new features and some old
features mixed together.

 A, B, C, and D are incorrect based on the above. (Objective 6.5)

 4. Given:
import java.util.*;
class MapEQ {
 public static void main(String[] args) {
 Map<ToDos, String> m = new HashMap<ToDos, String>();
 ToDos t1 = new ToDos("Monday");
 ToDos t2 = new ToDos("Monday");
 ToDos t3 = new ToDos("Tuesday");
 m.put(t1, "doLaundry");
 m.put(t2, "payBills");
 m.put(t3, "cleanAttic");
 System.out.println(m.size());
} }
class ToDos{
 String day;
 ToDos(String d) { day = d; }
 public boolean equals(Object o) {
 return ((ToDos)o).day == this.day;
 }
 // public int hashCode() { return 9; }
}

 Which is correct? (Choose all that apply.)

 A. As the code stands it will not compile

 B. As the code stands the output will be 2

 C. As the code stands the output will be 3

 D. If the hashCode() method is uncommented the output will be 2

 E. If the hashCode() method is uncommented the output will be 3

 F. If the hashCode() method is uncommented the code will not compile

Self Test Answers 649

650 Chapter 7: Generics and Collections

Answer:

 ✓ C and D are correct. If hashCode() is not overridden then every entry will go into its own
bucket, and the overridden equals() method will have no effect on determining equivalency.
If hashCode() is overridden, then the overridden equals() method will view t1 and
t2 as duplicates.

 A, B, E, and F are incorrect based on the above. (Objective 6.2)

 5. Given:
12. public class AccountManager {
13. private Map accountTotals = new HashMap();
14. private int retirementFund;
15.
16. public int getBalance(String accountName) {
17. Integer total = (Integer) accountTotals.get(accountName);
18. if (total == null)
19. total = Integer.valueOf(0);
20. return total.intValue();
21. }
23. public void setBalance(String accountName, int amount) {
24. accountTotals.put(accountName, Integer.valueOf(amount));
25. } }

 This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)

 A. Replace line 13 with
 private Map<String, int> accountTotals = new HashMap<String, int>();

 B. Replace line 13 with
 private Map<String, Integer> accountTotals = new HashMap<String, Integer>();

 C. Replace line 13 with
 private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

 D. Replace lines 17–20 with
 int total = accountTotals.get(accountName);
 if (total == null) total = 0;
 return total;

 E. Replace lines 17–20 with
 Integer total = accountTotals.get(accountName);
 if (total == null) total = 0;
 return total;

 F. Replace lines 17–20 with
 return accountTotals.get(accountName);

 G. Replace line 24 with
 accountTotals.put(accountName, amount);

 H. Replace line 24 with
 accountTotals.put(accountName, amount.intValue());

Answer:

 ✓ B, E, and G are correct.
 A is wrong because you can't use a primitive type as a type parameter. C is wrong because

a Map takes two type parameters separated by a comma. D is wrong because an int can't
autobox to a null, and F is wrong because a null can't unbox to 0. H is wrong because you
can't autobox a primitive just by trying to invoke a method with it. (Objective 6.4)

 6. Given:
interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
}

 Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

 A. Change the Carnivore interface to
 interface Carnivore<E extends Plant> extends Hungry<E> {}

 B. Change the Herbivore interface to
 interface Herbivore<E extends Animal> extends Hungry<E> {}

 C. Change the Sheep class to
 class Sheep extends Animal implements Herbivore<Plant> {
 public void munch(Grass x) {}
 }

Self Test Answers 651

652 Chapter 7: Generics and Collections

 D. Change the Sheep class to
 class Sheep extends Plant implements Carnivore<Wolf> {
 public void munch(Wolf x) {}
 }

 E. Change the Wolf class to
 class Wolf extends Animal implements Herbivore<Grass> {
 public void munch(Grass x) {}
 }

 F. No changes are necessary

Answer:

 ✓ B is correct. The problem with the original code is that Sheep tries to implement
Herbivore<Sheep> and Herbivore declares that its type parameter E can be any type that
extends Plant. Since a Sheep is not a Plant, Herbivore<Sheep> makes no sense—
the type Sheep is outside the allowed range of Herbivore's parameter E. Only solutions
that either alter the definition of a Sheep or alter the definition of Herbivore will be able
to fix this. So A, E, and F are eliminated. B works, changing the definition of an Herbivore
to allow it to eat Sheep solves the problem. C doesn't work because an Herbivore<Plant>
must have a munch(Plant) method, not munch(Grass). And D doesn't work, because
in D we made Sheep extend Plant, now the Wolf class breaks because its munch(Sheep)
method no longer fulfills the contract of Carnivore. (Objective 6.4)

 7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

 A. java.util.HashSet

 B. java.util.LinkedHashSet

 C. java.util.List

 D. java.util.ArrayList

 E. java.util.Vector

 F. java.util.PriorityQueue

Answer:

 ✓ D is correct. All of the collection classes allow you to grow or shrink the size of your
collection. ArrayList provides an index to its elements. The newer collection classes
tend not to have synchronized methods. Vector is an older implementation of ArrayList
functionality and has synchronized methods; it is slower than ArrayList.

 A, B, C, E, and F are incorrect based on the logic described above; Notes: C, List is an
interface, and F, PriorityQueue does not offer access by index. (Objective 6.1)

 8. Given a method declared as

 public static <E extends Number> List<E> process(List<E> nums)

 A programmer wants to use this method like this

 // INSERT DECLARATIONS HERE
 output = process(input);

 Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow
the code to compile? (Choose all that apply.)

 A. ArrayList<Integer> input = null;
ArrayList<Integer> output = null;

 B. ArrayList<Integer> input = null;
List<Integer> output = null;

 C. ArrayList<Integer> input = null;
List<Number> output = null;

 D. List<Number> input = null;
ArrayList<Integer> output = null;

 E. List<Number> input = null;
List<Number> output = null;

 F. List<Integer> input = null;
List<Integer> output = null;

 G. None of the above

Answer:

 ✓ B, E, and F are correct.
 The return type of process is definitely declared as a List, not an ArrayList, so A and D

are wrong. C is wrong because the return type evaluates to List<Integer>, and that can't
be assigned to a variable of type List<Number>. Of course all these would probably cause a
NullPointerException since the variables are still null—but the question only asked us
to get the code to compile. (Objective 6.4)

 9. Given the proper import statement(s), and

13. PriorityQueue<String> pq = new PriorityQueue<String>();
14. pq.add("2");
15. pq.add("4");

Self Test Answers 653

654 Chapter 7: Generics and Collections

16. System.out.print(pq.peek() + " ");
17. pq.offer("1");
18. pq.add("3");
19. pq.remove("1");
20. System.out.print(pq.poll() + " ");
21. if(pq.remove("2")) System.out.print(pq.poll() + " ");
22. System.out.println(pq.poll() + " " + pq.peek());

 What is the result?

 A. 2 2 3 3

 B. 2 2 3 4

 C. 4 3 3 4

 D. 2 2 3 3 3

 E. 4 3 3 3 3

 F. 2 2 3 3 4

 G. Compilation fails

 H. An exception is thrown at runtime

Answer:

 ✓ B is correct. For the sake of the exam, add() and offer() both add to (in this case),
naturally sorted queues. The calls to poll() both return and then remove the first item
from the queue, so the if test fails.

 A, C, D, E, F, G, and H are incorrect based on the above. (Objective 6.1)

 10. Given:

 3. import java.util.*;
 4. public class Mixup {
 5. public static void main(String[] args) {
 6. Object o = new Object();
 7. // insert code here
 8. s.add("o");
 9. s.add(o);
10. }
11. }

 And these three fragments:

I. Set s = new HashSet();
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();

 When fragments I, II, or III are inserted, independently, at line 7, which are true?
(Choose all that apply.)

 A. Fragment I compiles

 B. Fragment II compiles

 C. Fragment III compiles

 D. Fragment I executes without exception

 E. Fragment II executes without exception

 F. Fragment III executes without exception

Answer:

 ✓ A, B, C, D, and F are all correct.
 Only E is incorrect. Elements of a TreeSet must in some way implement Comparable.

(Objective 6.1)

 11. Given:

 3. import java.util.*;
 4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
 7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
 8. // insert code here
 9. }
10. public class TurtleTest {
11. public static void main(String[] args) {
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
13. t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
14. System.out.println(t.size());
15. }
16. }

 Self Test Answers 655

656 Chapter 7: Generics and Collections

 And these two fragments:

I. public int hashCode() { return size/5; }
II. // no hashCode method declared

 If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

 A. If fragment I is inserted, the output is 2

 B. If fragment I is inserted, the output is 3

 C. If fragment II is inserted, the output is 2

 D. If fragment II is inserted, the output is 3

 E. If fragment I is inserted, compilation fails

 F. If fragment II is inserted, compilation fails

Answer:

 ✓ A and D are correct. While fragment II wouldn’t fulfill the hashCode() contract (as you
can see by the results), it is legal Java. For the purpose of the exam, if you don’t override
hashCode(), every object will have a unique hashcode.

 B, C, E, and F are incorrect based on the above. (Objective 6.2)

 12. Given the proper import statement(s), and:

13. TreeSet<String> s = new TreeSet<String>();
14. TreeSet<String> subs = new TreeSet<String>();
15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.
17. subs = (TreeSet)s.subSet("b", true, "d", true);
18. s.add("g");
19. s.pollFirst();
20. s.pollFirst();
21. s.add("c2");
22. System.out.println(s.size() +" "+ subs.size());

 Which are true? (Choose all that apply.)

 A. The size of s is 4

 B. The size of s is 5

 C. The size of s is 7

 D. The size of subs is 1

 E. The size of subs is 2

 F. The size of subs is 3

 G. The size of subs is 4

 H. An exception is thrown at runtime

Answer:

 ✓ B and F are correct. After "g" is added, TreeSet s contains six elements and TreeSet subs
contains three (b, c, d), because "g" is out of the range of subs. The first pollFirst()
finds and removes only the "a". The second pollFirst() finds and removes the "b" from
both TreeSets (remember they are backed). The final add() is in range of both TreeSets.
The final contents are [c,c2,d,e,g] and [c,c2,d].

 A, C, D, E, G, and H are incorrect based on the above. (Objective 6.3)

 13. Given:

 3. import java.util.*;
 4. public class Magellan {
 5. public static void main(String[] args) {
 6. TreeMap<String, String> myMap = new TreeMap<String, String>();
 7. myMap.put("a", "apple"); myMap.put("d", "date");
 8. myMap.put("f", "fig"); myMap.put("p", "pear");
 9. System.out.println("1st after mango: " + // sop 1
10. myMap.higherKey("f"));
11. System.out.println("1st after mango: " + // sop 2
12. myMap.ceilingKey("f"));
13. System.out.println("1st after mango: " + // sop 3
14. myMap.floorKey("f"));
15. SortedMap<String, String> sub = new TreeMap<String, String>();
16. sub = myMap.tailMap("f");
17. System.out.println("1st after mango: " + // sop 4
18. sub.firstKey());
19. }
20. }

 Which of the System.out.println statements will produce the output 1st after mango: p?
(Choose all that apply.)

 A. sop 1

 B. sop 2

 C. sop 3

 Self Test Answers 657

658 Chapter 7: Generics and Collections

 D. sop 4

 E. None; compilation fails

 F. None; an exception is thrown at runtime

Answer:

 ✓ A is correct. The ceilingKey() method's argument is inclusive. The floorKey() method
would be used to find keys before the specified key. The firstKey() method's argument is
also inclusive.

 B, C, D, E, and F are incorrect based on the above. (Objective 6.3)

 14. Given:

 3. import java.util.*;
 4. class Business { }
 5. class Hotel extends Business { }
 6. class Inn extends Hotel { }
 7. public class Travel {
 8. ArrayList<Hotel> go() {
 9. // insert code here
10. }
11. }

 Which, inserted independently at line 9, will compile? (Choose all that apply.)

 A. return new ArrayList<Inn>();

 B. return new ArrayList<Hotel>();

 C. return new ArrayList<Object>();

 D. return new ArrayList<Business>();

Answer:

 ✓ B is correct.
 A is incorrect because polymorphic assignments don't apply to generic type parameters. C

and D are incorrect because they don't follow basic polymorphism rules. (Objective 6.4)

 15. Given:

 3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
 6. public static void main(String[] args) {
 7. TreeSet<Integer> i = new TreeSet<Integer>();
 8. TreeSet<Dog> d = new TreeSet<Dog>();
 9.
10. d.add(new Dog(1)); d.add(new Dog(2)); d.add(new Dog(1));
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

 What is the result?

 A. 1 2

 B. 2 2

 C. 2 3

 D. 3 2

 E. 3 3

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:

 ✓ G is correct. Class Dog needs to implement Comparable in order for a TreeSet (which
keeps its elements sorted) to be able to contain Dog objects.

 A, B, C, D, E, and F are incorrect based on the above. (Objective 6.5)

 16. Given:

 3. import java.util.*;
 4. public class GeoCache {
 5. public static void main(String[] args) {
 6. String[] s = {"map", "pen", "marble", "key"};
 7. Othello o = new Othello();
 8. Arrays.sort(s,o);

 Self Test Answers 659

660 Chapter 7: Generics and Collections

 9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output will contain a 1

 C. The output will contain a 2

 D. The output will contain a –1

 E. An exception is thrown at runtime

 F. The output will contain "key map marble pen"

 G. The output will contain "pen marble map key"

Answer:

 ✓ D and G are correct. First, the compareTo() method will reverse the normal sort.
Second, the sort() is valid. Third, the binarySearch() gives –1 because it needs to be
invoked using the same Comparator (o), as was used to sort the array. Note that when the
binarySearch() returns an "undefined result" it doesn’t officially have to be a -1, but it
usually is, so if you selected only G, you get full credit!

 A, B, C, E, and F are incorrect based on the above. (Objective 6.5)

8
Inner Classes

CERTIFICATION OBJECTIVES

Inner Classes

Method-Local Inner Classes

Anonymous Inner Classes

Static Nested Classes
✓ Two-Minute Drill

 Q&A Self Test

662 Chapter 8: Inner Classes

Inner classes (including static nested classes) appear throughout the exam. Although there
are no official exam objectives specifically about inner classes, Objective 1.1 includes inner
(a.k.a. nested) classes. More important, the code used to represent questions on virtually any

topic on the exam can involve inner classes. Unless you deeply understand the rules and syntax
for inner classes, you're likely to miss questions you'd otherwise be able to answer. As if the exam
weren't already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes,
and exposes you to the kinds of (often strange-looking) syntax examples you'll
see scattered throughout the entire exam. So you've really got two goals for this
chapter—to learn what you'll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you
can correctly process questions testing your knowledge of other topics.

So what's all the hoopla about inner classes? Before we get into it, we have to
warn you (if you don't already know) that inner classes have inspired passionate love
‘em or hate ‘em debates since first introduced in version 1.1 of the language. For
once, we're going to try to keep our opinions to ourselves here and just present the
facts as you'll need to know them for the exam. It's up to you to decide how—and
to what extent—you should use inner classes in your own development. We mean
it. We believe they have some powerful, efficient uses in very specific situations,
including code that's easier to read and maintain, but they can also be abused and
lead to code that's as clear as a cornfield maze, and to the syndrome known as
"reuseless": code that's useless over and over again.

Inner classes let you define one class within another. They provide a type of
scoping for your classes since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a "top-level nested class" (an
inner class marked static), which technically isn't really an inner class. Because a
static nested class is still a class defined within the scope of another class, we're still
going to cover them in this chapter on inner classes.

Unlike the other chapters in this book, the certification objectives for inner
classes don't have official exam objective numbers since they're part of other
objectives covered elsewhere. So for this chapter, the Certification Objective
headings in the following list represent the four inner class topics discussed in this
chapter, rather than four official exam objectives:

Inner Classes 663

■ Inner classes

■ Method-local inner classes

■ Anonymous inner classes

■ Static nested classes

CERTIFICATION OBJECTIVE

Inner Classes
You're an OO programmer, so you know that for reuse and flexibility/extensibility
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any other behavior
should be part of another class better suited for that job. Sometimes, though, you
find yourself designing a class where you discover you need behavior that belongs
in a separate, specialized class, but also needs to be intimately tied to the class
you're designing.

Event handlers are perhaps the best example of this (and are, in fact, one of the
main reasons inner classes were added to the language in the first place). If you have
a GUI class that performs some job like, say, a chat client, you might want the
chat-client–specific methods (accept input, read new messages from server, send user
input back to server, and so on) to be in the class. But how do those methods get
invoked in the first place? A user clicks a button. Or types some text in the input
field. Or a separate thread doing the I/O work of getting messages from the server
has messages that need to be displayed in the GUI. So you have chat-client–specific
methods, but you also need methods for handling the "events" (button presses,
keyboard typing, I/O available, and so on) that drive the calls on those chat-
client methods. The ideal scenario—from an OO perspective—is to keep the chat-
client–specific methods in the ChatClient class, and put the event-handling code in a
separate event-handling class.

Nothing unusual about that so far; after all, that's how you're supposed to design
OO classes. As specialists. But here's the problem with the chat-client scenario: the
event-handling code is intimately tied to the chat-client–specific code! Think about
it: when the user presses a Send button (indicating that they want their typed-in
message to be sent to the chat server), the chat-client code that sends the message
needs to read from a particular text field. In other words, if the user clicks Button A,
the program is supposed to extract the text from the TextField B, of a particular

ChatClient instance. Not from some other text field from some other object, but
specifically the text field that a specific instance of the ChatClient class has a
reference to. So the event-handling code needs access to the members of the
ChatClient object, to be useful as a "helper" to a particular ChatClient instance.

And what if the ChatClient class needs to inherit from one class, but the event
handling code is better off inheriting from some other class? You can't make a
class extend more than one class, so putting all the code (the chat-client– specific
code and the event-handling code) in one class won't work in that case. So what
you'd really like to have is the benefit of putting your event code in a separate class
(better OO, encapsulation, and the ability to extend a class other than the class the
ChatClient extends) but still allow the event-handling code to have easy access
to the members of the ChatClient (so the event-handling code can, for example,
update the ChatClient's private instance variables). You could manage it by making
the members of the ChatClient accessible to the event-handling class by, for
example, marking them public. But that's not a good solution either.

You already know where this is going—one of the key benefits of an inner class
is the "special relationship" an inner class instance shares with an instance of
the outer class. That "special relationship" gives code in the inner class access to
members of the enclosing (outer) class, as if the inner class were part of the outer
class. In fact, that's exactly what it means: the inner class is a part of the outer class.
Not just a "part" but a full-fledged, card-carrying member of the outer class. Yes, an
inner class instance has access to all members of the outer class, even those marked
private. (Relax, that's the whole point, remember? We want this separate inner
class instance to have an intimate relationship with the outer class instance, but we
still want to keep everyone else out. And besides, if you wrote the outer class, then
you also wrote the inner class! So you're not violating encapsulation; you
designed it this way.)

Coding a "Regular" Inner Class
We use the term regular here to represent inner classes that are not

■ Static

■ Method-local

■ Anonymous

For the rest of this section, though, we'll just use the term "inner class" and drop
the "regular". (When we switch to one of the other three types in the preceding list,
you'll know it.) You define an inner class within the curly braces of the outer class:

664 Chapter 8: Inner Classes

class MyOuter {
 class MyInner { }
}

Piece of cake. And if you compile it,

%javac MyOuter.java

you'll end up with two class files:

MyOuter.class
MyOuter$MyInner.class

The inner class is still, in the end, a separate class, so a separate class file is generated
for it. But the inner class file isn't accessible to you in the usual way. You can't say

%java MyOuter$MyInner

in hopes of running the main() method of the inner class, because a regular inner class
can't have static declarations of any kind. The only way you can access the inner class
is through a live instance of the outer class! In other words, only at runtime when
there's already an instance of the outer class to tie the inner class instance to. You'll see
all this in a moment. First, let's beef up the classes a little:

class MyOuter {
 private int x = 7;

 // inner class definition
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 } // close inner class definition

} // close outer class

The preceding code is perfectly legal. Notice that the inner class is indeed
accessing a private member of the outer class. That's fine, because the inner
class is also a member of the outer class. So just as any member of the outer class
(say, an instance method) can access any other member of the outer class, private
or not, the inner class—also a member—can do the same.

OK, so now that we know how to write the code giving an inner class access to
members of the outer class, how do you actually use it?

Coding a "Regular" Inner Class 665

Instantiating an Inner Class
To create an instance of an inner class, you must have an instance of the outer class
to tie to the inner class. There are no exceptions to this rule: an inner class instance
can never stand alone without a direct relationship to an instance of the outer class.

Instantiating an Inner Class from Within the Outer Class Most often, it
is the outer class that creates instances of the inner class, since it is usually the outer
class wanting to use the inner instance as a helper for its own personal use. We'll
modify the MyOuter class to create an instance of MyInner:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner(); // make an inner instance
 in.seeOuter();
 }

 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 }
}

You can see in the preceding code that the MyOuter code treats MyInner just as
though MyInner were any other accessible class—it instantiates it using the class
name (new MyInner()), and then invokes a method on the reference variable
(in.seeOuter()). But the only reason this syntax works is because the outer class
instance method code is doing the instantiating. In other words, there's already an
instance of the outer class—the instance running the makeInner() method. So how
do you instantiate a MyInner object from somewhere outside the MyOuter class? Is
it even possible? (Well, since we're going to all the trouble of making a whole new
subhead for it, as you'll see next, there's no big mystery here.)

Creating an Inner Class Object from Outside the Outer Class
Instance Code Whew. Long subhead there, but it does explain what we're
trying to do. If we want to create an instance of the inner class, we must have
an instance of the outer class. You already know that, but think about the

666 Chapter 8: Inner Classes

implications…it means that, without a reference to an instance of the outer class,
you can't instantiate the inner class from a static method of the outer class (be-
cause, don't forget, in static code there is no this reference), or from any other
code in any other class. Inner class instances are always handed an implicit reference
to the outer class. The compiler takes care of it, so you'll never see anything but the
end result—the ability of the inner class to access members of the outer class. The
code to make an instance from anywhere outside nonstatic code of the outer class
is simple, but you must memorize this for the exam!

public static void main(String[] args) {
 MyOuter mo = new MyOuter(); // gotta get an instance!
 MyOuter.MyInner inner = mo.new MyInner();
 inner.seeOuter();
}

The preceding code is the same regardless of whether the main() method is within
the MyOuter class or some other class (assuming the other class has access to
MyOuter, and since MyOuter has default access, that means the code must be in a
class within the same package as MyOuter).

If you're into one-liners, you can do it like this:

public static void main(String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
}

You can think of this as though you're invoking a method on the outer instance,
but the method happens to be a special inner class instantiation method, and it's
invoked using the keyword new. Instantiating an inner class is the only scenario
in which you'll invoke new on an instance as opposed to invoking new to
construct an instance.

Here's a quick summary of the differences between inner class instantiation code
that's within the outer class (but not static), and inner class instantiation code
that's outside the outer class:

■ From inside the outer class instance code, use the inner class name in the
 normal way:

 MyInner mi = new MyInner();

Coding a "Regular" Inner Class 667

■ From outside the outer class instance code (including static method code
within the outer class), the inner class name must now include the outer
class's name:

 MyOuter.MyInner

 To instantiate it, you must use a reference to the outer class:

 new MyOuter().new MyInner(); or outerObjRef.new MyInner();

 if you already have an instance of the outer class.

Referencing the Inner or Outer Instance
from Within the Inner Class

How does an object refer to itself normally? By using the this reference. Here is a
quick review of this:

■ The keyword this can be used only from within instance code.
In other words, not within static code.

■ The this reference is a reference to the currently executing object. In other
words, the object whose reference was used to invoke the currently running
method.

■ The this reference is the way an object can pass a reference to itself to some
other code, as a method argument:

 public void myMethod() {
 MyClass mc = new MyClass();
 mc.doStuff(this); // pass a ref to object running myMethod
 }

Within an inner class code, the this reference refers to the instance of the inner
class, as you'd probably expect, since this always refers to the currently executing
object. But what if the inner class code wants an explicit reference to the outer class
instance that the inner instance is tied to? In other words, how do you reference the
"outer this"? Although normally the inner class code doesn't need a reference to
the outer class, since it already has an implicit one it's using to access the members
of the outer class, it would need a reference to the outer class if it needed to pass that
reference to some other code as follows:

668 Chapter 8: Inner Classes

class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
}

If we run the complete code as follows:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner();
 in.seeOuter();
 }
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
 }
 public static void main (String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
 }
}

the output is something like this:

Outer x is 7
Inner class ref is MyOuter$MyInner@113708
Outer class ref is MyOuter@33f1d7

So the rules for an inner class referencing itself or the outer instance are as follows:

■ To reference the inner class instance itself, from within the inner class code,
use this.

■ To reference the "outer this" (the outer class instance) from within the inner
class code, use NameOfOuterClass.this (example, MyOuter.this).

Referencing the Inner or Outer Instance from Within the Inner Class 669

Member Modifiers Applied to Inner Classes A regular inner class is a
member of the outer class just as instance variables and methods are, so the
following modifiers can be applied to an inner class:

■ final

■ abstract

■ public

■ private

■ protected

■ static—but static turns it into a static nested class not an inner class

■ strictfp

CERTIFICATION OBJECTIVE

Method-Local Inner Classes
A regular inner class is scoped inside another class's curly braces, but outside
any method code (in other words, at the same level that an instance variable is
declared). But you can also define an inner class within a method:

class MyOuter2 {
 private String x = "Outer2";

 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()

} // close outer class

The preceding code declares a class, MyOuter2, with one method, doStuff().
But inside doStuff(), another class, MyInner, is declared, and it has a method of
its own, seeOuter(). The code above is completely useless, however, because it

670 Chapter 8: Inner Classes

never instantiates the inner class! Just because you declared the class doesn't mean
you created an instance of it. So to use the inner class you must make an instance
of it somewhere within the method but below the inner class definition (or the
compiler won't be able to find the inner class). The following legal code shows
how to instantiate and use a method-local inner class:

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition

 MyInner mi = new MyInner(); // This line must come
 // after the class
 mi.seeOuter();
 } // close outer class method doStuff()
} // close outer class

What a Method-Local Inner Object Can and Can't Do
A method-local inner class can be instantiated only within the method where the inner
class is defined. In other words, no other code running in any other method—inside
or outside the outer class—can ever instantiate the method-local inner class. Like
regular inner class objects, the method-local inner class object shares a special
relationship with the enclosing (outer) class object, and can access its private (or
any other) members. However, the inner class object cannot use the local variables
of the method the inner class is in. Why not?

Think about it. The local variables of the method live on the stack, and exist only for
the lifetime of the method. You already know that the scope of a local variable is
limited to the method the variable is declared in. When the method ends, the stack
frame is blown away and the variable is history. But even after the method
completes, the inner class object created within it might still be alive on the heap if,
for example, a reference to it was passed into some other code and then stored in an
instance variable. Because the local variables aren't guaranteed to be alive as long
as the method-local inner class object, the inner class object can't use them. Unless
the local variables are marked final! The following code attempts to access a local
variable from within a method-local inner class.

What a Method-Local Inner Object Can and Can't Do 671

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 String z = "local variable";
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Local variable z is " + z); // Won't Compile!
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()
} // close outer class

Compiling the preceding code really upsets the compiler:

MyOuter2.java:8: local variable z is accessed from within inner class;
needs to be declared final

 System.out.println("Local variable z is " + z);
 ^

Marking the local variable z as final fixes the problem:

final String z = "local variable"; // Now inner object can use it

And just a reminder about modifiers within a method: the same rules apply to
method-local inner classes as to local variable declarations. You can't, for example,
mark a method-local inner class public, private, protected, static, transient,
and the like. For the purpose of the exam, the only modifiers you can apply to a
method-local inner class are abstract and final, but as always, never both at the
same time.

Remember that a local class declared in a static method has access
to only static members of the enclosing class, since there is no associated instance of the
enclosing class. If you're in a static method there is no this, so an inner class in a static
method is subject to the same restrictions as the static method. In other words, no access
to instance variables.

672 Chapter 8: Inner Classes

CERTIFICATION OBJECTIVE

Anonymous Inner Classes
So far we've looked at defining a class within an enclosing class (a regular inner
class) and within a method (a method-local inner class). Finally, we're going to look
at the most unusual syntax you might ever see in Java; inner classes declared without
any class name at all (hence the word anonymous). And if that's not weird enough,
you can define these classes not just within a method, but even within an argument
to a method. We'll look first at the plain-old (as if there is such a thing as a plain-old
anonymous inner class) version (actually, even the plain-old version comes in two
flavors), and then at the argument-declared anonymous inner class.

Perhaps your most important job here is to learn to not be thrown when you see
the syntax. The exam is littered with anonymous inner class code: you might
see it on questions about threads, wrappers, overriding, garbage collection, and...
well, you get the idea.

Plain-Old Anonymous Inner Classes, Flavor One

Check out the following legal-but-strange-the-first-time-you-see-it code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }

}
class Food {
 Popcorn p = new Popcorn() {
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

}

Let's look at what's in the preceding code:

■ We define two classes, Popcorn and Food.

■ Popcorn has one method, pop().

■ Food has one instance variable, declared as type Popcorn. That's it for Food.
Food has no methods.

Plain-Old Anonymous Inner Classes, Flavor One 673

And here's the big thing to get

The Popcorn reference variable refers not to an instance of Popcorn, but to an
instance of an anonymous (unnamed) subclass of Popcorn.

Let's look at just the anonymous class code:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. };

Line 2 Line 2 starts out as an instance variable declaration of type Popcorn. But
instead of looking like this:

Popcorn p = new Popcorn(); // notice the semicolon at the end

there's a curly brace at the end of line 2, where a semicolon would normally be.

Popcorn p = new Popcorn() { // a curly brace, not a semicolon

You can read line 2 as saying,

Declare a reference variable, p, of type Popcorn. Then declare a new class that
has no name, but that is a subclass of Popcorn. And here's the curly brace that
opens the class definition…

Line 3 Line 3, then, is actually the first statement within the new class
definition. And what is it doing? Overriding the pop() method of the superclass
Popcorn. This is the whole point of making an anonymous inner class—to override
one or more methods of the superclass! (Or to implement methods of an interface,
but we'll save that for a little later.)

Line 4 Line 4 is the first (and in this case only) statement within the overriding
pop() method. Nothing special there.

Line 5 Line 5 is the closing curly brace of the pop() method. Nothing special.

Line 6 Here's where you have to pay attention: line 6 includes a curly brace
closing off the anonymous class definition (it's the companion brace to the one

674 Chapter 8: Inner Classes

on line 2), but there's more! Line 6 also has the semicolon that ends the statement
started on line 2—the statement where it all began—the statement declaring and
initializing the Popcorn reference variable. And what you're left with is a Popcorn
reference to a brand-new instance of a brand-new, just-in-time, anonymous (no
name) subclass of Popcorn.

Polymorphism is in play when anonymous inner classes are involved. Remember
that, as in the preceding Popcorn example, we're using a superclass reference
variable type to refer to a subclass object. What are the implications? You can
only call methods on an anonymous inner class reference that are defined in the
reference variable type! This is no different from any other polymorphic references,
for example,

class Horse extends Animal{
 void buck() { }
}
class Animal {
 void eat() { }
}

Plain-Old Anonymous Inner Classes, Flavor One 675

The closing semicolon is hard to spot. Watch for code like this:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. } // Missing the semicolon needed to end
 // the statement started on 2!
7. Foo f = new Foo();

You'll need to be especially careful about the syntax when inner
classes are involved, because the code on line 6 looks perfectly natural. It's rare to see
semicolons following curly braces.

class Test {
 public static void main (String[] args) {
 Animal h = new Horse();
 h.eat(); // Legal, class Animal has an eat() method
 h.buck(); // Not legal! Class Animal doesn't have buck()
 }
}

So on the exam, you must be able to spot an anonymous inner class that—
rather than overriding a method of the superclass—defines its own new method. The
method definition isn't the problem, though; the real issue is how do you invoke
that new method? The reference variable type (the superclass) won't know anything
about that new method (defined in the anonymous subclass), so the compiler will
complain if you try to invoke any method on an anonymous inner class reference that
is not in the superclass class definition.

Check out the following, illegal code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }
}

class Food {
 Popcorn p = new Popcorn() {
 public void sizzle() {
 System.out.println("anonymous sizzling popcorn");
 }
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

 public void popIt() {
 p.pop(); // OK, Popcorn has a pop() method
 p.sizzle(); // Not Legal! Popcorn does not have sizzle()
 }
}

Compiling the preceding code gives us something like,

Anon.java:19: cannot resolve symbol
symbol : method sizzle ()

676 Chapter 8: Inner Classes

location: class Popcorn
 p.sizzle();
 ^

which is the compiler's way of saying, "I can't find method sizzle() in class
Popcorn," followed by, "Get a clue."

Plain-Old Anonymous Inner Classes, Flavor Two
The only difference between flavor one and flavor two is that flavor one creates
an anonymous subclass of the specified class type, whereas flavor two creates an
anonymous implementer of the specified interface type. In the previous examples,
we defined a new anonymous subclass of type Popcorn as follows:

Popcorn p = new Popcorn() {

But if Popcorn were an interface type instead of a class type, then the new
anonymous class would be an implementer of the interface rather than a subclass of
the class. Look at the following example:

interface Cookable {
 public void cook();
}
class Food {
 Cookable c = new Cookable() {
 public void cook() {
 System.out.println("anonymous cookable implementer");
 }
 };
}

The preceding code, like the Popcorn example, still creates an instance of an
anonymous inner class, but this time the new just-in-time class is an implementer of the
Cookable interface. And note that this is the only time you will ever see the syntax

new Cookable()

where Cookable is an interface rather than a nonabstract class type. Because
think about it, you can't instantiate an interface, yet that's what the code looks
like it's doing. But of course it's not instantiating a Cookable object, it's creating an
instance of a new, anonymous, implementer of Cookable. You can read this line:

Plain-Old Anonymous Inner Classes, Flavor Two 677

Cookable c = new Cookable() {

as, "Declare a reference variable of type Cookable that, obviously, will refer to an
object from a class that implements the Cookable interface. But, oh yes, we don't
yet have a class that implements Cookable, so we're going to make one right here,
right now. We don't need a name for the class, but it will be a class that implements
Cookable, and this curly brace starts the definition of the new implementing class."

One more thing to keep in mind about anonymous interface implementers—they
can implement only one interface. There simply isn't any mechanism to say that
your anonymous inner class is going to implement multiple interfaces. In fact, an
anonymous inner class can't even extend a class and implement an interface at the
same time. The inner class has to choose either to be a subclass of a named class—
and not directly implement any interfaces at all—or to implement a single interface.
By directly, we mean actually using the keyword implements as part of the class
declaration. If the anonymous inner class is a subclass of a class type, it automatically
becomes an implementer of any interfaces implemented by the superclass.

Argument-Defi ned Anonymous Inner Classes
If you understood what we've covered so far in this chapter, then this last part will
be simple. If you are still a little fuzzy on anonymous classes, however, then you
should reread the previous sections. If they're not completely clear, we'd like to take
full responsibility for the confusion. But we'll be happy to share.

678 Chapter 8: Inner Classes

Don't be fooled by any attempts to instantiate an interface except in the
case of an anonymous inner class. The following is not legal,

 Runnable r = new Runnable(); // can't instantiate interface

whereas the following is legal, because it's instantiating an implementer of the
Runnable interface (an anonymous implementation class):

 Runnable r = new Runnable() { // curly brace, not semicolon
 public void run() { }
 };

Okay, if you've made it to this sentence, then we're all going to assume you
understood the preceding section, and now we're just going to add one new twist.
Imagine the following scenario. You're typing along, creating the Perfect Class, when
you write code calling a method on a Bar object, and that method takes an object of
type Foo (an interface).

class MyWonderfulClass {

 void go() {

 Bar b = new Bar();

 b.doStuff(ackWeDoNotHaveAFoo!); // Don't try to compile this at home

 }

}

interface Foo {

 void foof();

}

class Bar {

 void doStuff(Foo f) { }

}

No problemo, except that you don't have an object from a class that implements
Foo, and you can't instantiate one, either, because you don't even have a class that
implements Foo, let alone an instance of one. So you first need a class that
implements Foo, and then you need an instance of that class to pass to the Bar class's
doStuff() method. Savvy Java programmer that you are, you simply define an
anonymous inner class, right inside the argument. That's right, just where you least
expect to find a class. And here's what it looks like:

 1. class MyWonderfulClass {
 2. void go() {
 3. Bar b = new Bar();
 4. b.doStuff(new Foo() {
 5. public void foof() {
 6. System.out.println("foofy");
 7. } // end foof method
 8. }); // end inner class def, arg, and b.doStuff stmt.
 9. } // end go()
10. } // end class
11.
12. interface Foo {
13. void foof();
14. }
15. class Bar {
16. void doStuff(Foo f) { }
17. }

Argument-Defi ned Anonymous Inner Classes 679

All the action starts on line 4. We're calling doStuff() on a Bar object, but
the method takes an instance that IS-A Foo, where Foo is an interface. So we must
make both an implementation class and an instance of that class, all right here in the
argument to doStuff(). So that's what we do. We write

 new Foo() {

to start the new class definition for the anonymous class that implements the Foo
interface. Foo has a single method to implement, foof(), so on lines 5, 6, and 7
we implement the foof() method. Then on line 8—whoa!—more strange syntax
appears. The first curly brace closes off the new anonymous class definition. But
don't forget that this all happened as part of a method argument, so the close
parenthesis,), finishes off the method invocation, and then we must still end the
statement that began on line 4, so we end with a semicolon. Study this syntax! You
will see anonymous inner classes on the exam, and you'll have to be very, very picky
about the way they're closed. If they're argument local, they end like this:

});

but if they're just plain-old anonymous classes, then they end like this:

};

Regardless, the syntax is not what you use in virtually any other part of Java, so
be careful. Any question from any part of the exam might involve anonymous inner
classes as part of the code.

CERTIFICATION OBJECTIVE

Static Nested Classes
We saved the easiest for last, as a kind of treat :)

You'll sometimes hear static nested classes referred to as static inner classes, but
they really aren't inner classes at all, by the standard definition of an inner class.
While an inner class (regardless of the flavor) enjoys that special relationship with
the outer class (or rather the instances of the two classes share a relationship), a
static nested class does not. It is simply a non-inner (also called "top-level") class
scoped within another. So with static classes it's really more about name-space
resolution than about an implicit relationship between the two classes.

680 Chapter 8: Inner Classes

A static nested class is simply a class that's a static member of the enclosing class:

class BigOuter {
 static class Nested { }
}

The class itself isn't really "static"; there's no such thing as a static class. The
static modifier in this case says that the nested class is a static member of the outer
class. That means it can be accessed, as with other static members, without having
an instance of the outer class.

Instantiating and Using Static Nested Classes
You use standard syntax to access a static nested class from its enclosing class. The
syntax for instantiating a static nested class from a non-enclosing class is a little
different from a normal inner class, and looks like this:

class BigOuter {
 static class Nest {void go() { System.out.println("hi"); } }
}
class Broom {
 static class B2 {void goB2() { System.out.println("hi 2"); } }
 public static void main(String[] args) {
 BigOuter.Nest n = new BigOuter.Nest(); // both class names
 n.go();
 B2 b2 = new B2(); // access the enclosed class
 b2.goB2();
 }
}

Which produces

hi
hi 2

Instantiating and Using Static Nested Classes 681

Just as a static method does not have access to the instance variables and
nonstatic methods of the class, a static nested class does not have access to the instance
variables and nonstatic methods of the outer class. Look for static nested classes with
code that behaves like a nonstatic (regular inner) class.

CERTIFICATION SUMMARY
Inner classes will show up throughout the exam, in any topic, and these are some of
the exam's hardest questions. You should be comfortable with the sometimes bizarre
syntax, and know how to spot legal and illegal inner class definitions.

We looked first at "regular" inner classes, where one class is a member of another.
You learned that coding an inner class means putting the class definition of the
inner class inside the curly braces of the enclosing (outer) class, but outside of
any method or other code block. You learned that an inner class instance shares a
special relationship with a specific instance of the outer class, and that this special
relationship lets the inner class access all members of the outer class, including those
marked private. You learned that to instantiate an inner class, you must have a
reference to an instance of the outer class.

Next we looked at method-local inner classes—classes defined inside a method.
The code for a method-local inner class looks virtually the same as the code for any
other class definition, except that you can't apply an access modifier the way you
can with a regular inner class. You learned why method-local inner classes cannot
use non-final local variables declared within the method—the inner class instance
may outlive the stack frame, so the local variable might vanish while the inner class
object is still alive. You saw that to use the inner class you need to instantiate it, and
that the instantiation must come after the class declaration in the method.

We also explored the strangest inner class type of all—the anonymous inner class.
You learned that they come in two forms, normal and argument-defined. Normal,
ho-hum, anonymous inner classes are created as part of a variable assignment, while
argument-defined inner classes are actually declared, defined, and automatically
instantiated all within the argument to a method! We covered the way anonymous
inner classes can be either a subclass of the named class type, or an implementer of
the named interface. Finally, we looked at how polymorphism applies to anonymous
inner classes: you can invoke on the new instance only those methods defined in
the named class or interface type. In other words, even if the anonymous inner class
defines its own new method, no code from anywhere outside the inner class will be
able to invoke that method.

As if we weren't already having enough fun for one day, we pushed on to static
nested classes, which really aren't inner classes at all. Known as static nested classes,
a nested class marked with the static modifier is quite similar to any other non-
inner class, except that to access it, code must have access to both the nested
and enclosing class. We saw that because the class is static, no instance of the
enclosing class is needed, and thus the static nested class does not share a special
relationship with any instance of the enclosing class. Remember, static inner classes
can't access instance methods or variables.

682 Chapter 8: Inner Classes

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Inner Classes

❑ A "regular" inner class is declared inside the curly braces of another class, but
outside any method or other code block.

❑ An inner class is a full-fledged member of the enclosing (outer) class, so it
can be marked with an access modifier as well as the abstract or final
modifiers. (Never both abstract and final together— remember that
abstract must be subclassed, whereas final cannot be subclassed).

❑ An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the
outer class's members, including those marked private.

❑ To instantiate an inner class, you must have a reference to an instance of the
outer class.

❑ From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:
MyInner mi = new MyInner();

❑ From code outside the enclosing class's instance methods, you can
instantiate the inner class only by using both the inner and outer class names,
and a reference to the outer class as follows:
MyOuter mo = new MyOuter();

MyOuter.MyInner inner = mo.new MyInner();

❑ From code within the inner class, the keyword this holds a reference to
the inner class instance. To reference the outer this (in other words, the
instance of the outer class that this inner instance is tied to) precede the
keyword this with the outer class name as follows: MyOuter.this;

Method-Local Inner Classes

❑ A method-local inner class is defined within a method of the enclosing class.

❑ For the inner class to be used, you must instantiate it, and that instantiation
must happen within the same method, but after the class definition code.

❑ A method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked final.

Two-Minute Drill 683

✓

❑ The only modifiers you can apply to a method-local inner class are abstract
and final. (Never both at the same time, though.)

Anonymous Inner Classes

❑ Anonymous inner classes have no name, and their type must be either a
subclass of the named type or an implementer of the named interface.

❑ An anonymous inner class is always created as part of a statement; don't
forget to close the statement after the class definition with a curly brace. This
is a rare case in Java, a curly brace followed by a semicolon.

❑ Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class (or
interface), even though the anonymous class is really a subclass or imple-
menter of the reference variable type.

❑ An anonymous inner class can extend one subclass or implement one
interface. Unlike non-anonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

❑ An argument-defined inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement: });

Static Nested Classes

❑ Static nested classes are inner classes marked with the static modifier.

❑ A static nested class is not an inner class, it's a top-level nested class.

❑ Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don't need an instance of the
outer class to instantiate a static nested class.

❑ Instantiating a static nested class requires using both the outer and nested
class names as follows:
BigOuter.Nested n = new BigOuter.Nested();

❑ A static nested class cannot access non-static members of the outer class,
since it does not have an implicit reference to any outer instance (in other
words, the nested class instance does not get an outer this reference).

684 Chapter 8: Inner Classes

SELF TEST

The following questions will help you measure your understanding of the dynamic and life-altering
material presented in this chapter. Read all of the choices carefully. Take your time. Breathe.

 1. Which are true about a static nested class? (Choose all that apply.)
 A. You must have a reference to an instance of the enclosing class in order to instantiate it
 B. It does not have access to non-static members of the enclosing class
 C. Its variables and methods must be static
 D. If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();
 E. It must extend the enclosing class

 2. Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

 Which create an anonymous inner class from within class Bar? (Choose all that apply.)
 A. Boo f = new Boo(24) { };

 B. Boo f = new Bar() { };

 C. Boo f = new Boo() {String s; };

 D. Bar f = new Boo(String s) { };

 E. Boo f = new Boo.Bar(String s) { };

 3. Which are true about a method-local inner class? (Choose all that apply.)

 A. It must be marked final
 B. It can be marked abstract

Self Test 685

 C. It can be marked public
 D. It can be marked static
 E. It can access private members of the enclosing class

 4. Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {
 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

 What is the result?
 A. An exception occurs at runtime
 B. true

 C. Fred

 D. Compilation fails because of an error on line 3
 E. Compilation fails because of an error on line 4
 F. Compilation fails because of an error on line 8
 G. Compilation fails because of an error on a line other than 3, 4, or 8

 5. Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

686 Chapter 8: Inner Classes

 What is the result?
 A. An exception occurs at runtime at line 10
 B. Zippo

 C. Compilation fails because of an error on line 3
 D. Compilation fails because of an error on line 9
 E. Compilation fails because of an error on line 10

 6. Given:

public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
 }
}

 What is the result?
 A. 57 22

 B. 45 38

 C. 45 57

 D. An exception occurs at runtime
 E. Compilation fails

Self Test 687

 7. Given:

 3. public class Tour {
 4. public static void main(String[] args) {
 5. Cathedral c = new Cathedral();
 6. // insert code here
 7. s.go();
 8. }
 9. }
10. class Cathedral {
11. class Sanctum {
12. void go() { System.out.println("spooky"); }
13. }
14. }

 Which, inserted independently at line 6, compile and produce the output "spooky"? (Choose all
that apply.)

 A. Sanctum s = c.new Sanctum();

 B. c.Sanctum s = c.new Sanctum();

 C. c.Sanctum s = Cathedral.new Sanctum();

 D. Cathedral.Sanctum s = c.new Sanctum();

 E. Cathedral.Sanctum s = Cathedral.new Sanctum();

 8. Given:

 5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
 8. public static void main(String[] args) {
 9. new TestInners().go();
10. }
11. void go() {
12. new A().m();
13. class A { void m() { System.out.println("inner"); } }
14. }
15. class A { void m() { System.out.println("middle"); } }
16. }

 What is the result?
 A. inner

 B. outer

688 Chapter 8: Inner Classes

 C. middle

 D. Compilation fails
 E. An exception is thrown at runtime

 9. Given:

 3. public class Car {
 4. class Engine {
 5. // insert code here
 6. }
 7. public static void main(String[] args) {
 8. new Car().go();
 9. }
10. void go() {
11. new Engine();
12. }
13. void drive() { System.out.println("hi"); }
14. }

 Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)
 A. { Car.drive(); }

 B. { this.drive(); }

 C. { Car.this.drive(); }

 D. { this.Car.this.drive(); }

 E. Engine() { Car.drive(); }

 F. Engine() { this.drive(); }

 G. Engine() { Car.this.drive(); }

10. Given:

 3. public class City {
 4. class Manhattan {
 5. void doStuff() throws Exception { System.out.print("x "); }
 6. }
 7. class TimesSquare extends Manhattan {
 8. void doStuff() throws Exception { }
 9. }
10. public static void main(String[] args) throws Exception {
11. new City().go();
12. }
13. void go() throws Exception { new TimesSquare().doStuff(); }
14. }

Self Test 689

 What is the result?
 A. x

 B. x x

 C. No output is produced
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 7
 G. Compilation fails due only to an error on line 10
 H. Compilation fails due only to an error on line 13

 11. Given:

 3. public class Navel {
 4. private int size = 7;
 5. private static int length = 3;
 6. public static void main(String[] args) {
 7. new Navel().go();
 8. }
 9. void go() {
10. int size = 5;
11. System.out.println(new Gazer().adder());
12. }
13. class Gazer {
14. int adder() { return size * length; }
15. }
16. }

 What is the result?
 A. 15

 B. 21

 C. An exception is thrown at runtime
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 5

690 Chapter 8: Inner Classes

 12. Given:

 3. import java.util.*;
 4. public class Pockets {
 5. public static void main(String[] args) {
 6. String[] sa = {"nickel", "button", "key", "lint"};
 7. Sorter s = new Sorter();
 8. for(String s2: sa) System.out.print(s2 + " ");
 9. Arrays.sort(sa,s);
10. System.out.println();
11. for(String s2: sa) System.out.print(s2 + " ");
12. }
13. class Sorter implements Comparator<String> {
14. public int compare(String a, String b) {
15. return b.compareTo(a);
16. }
17. }
18. }

 What is the result?
 A. Compilation fails
 B. button key lint nickel

 nickel lint key button

 C. nickel button key lint

 button key lint nickel

 D. nickel button key lint

 nickel button key lint

 E. nickel button key lint

 nickel lint key button

 F. An exception is thrown at runtime

Self Test 691

SELF TEST ANSWERS

 1. Which are true about a static nested class? (Choose all that apply.)
 A. You must have a reference to an instance of the enclosing class in order to instantiate it
 B. It does not have access to non-static members of the enclosing class
 C. Its variables and methods must be static
 D. If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();
 E. It must extend the enclosing class

 Answer:

 ✓ B and D. B is correct because a static nested class is not tied to an instance of the
enclosing class, and thus can't access the non-static members of the class (just as a
static method can't access non-static members of a class). D uses the correct syntax
for instantiating a static nested class.

 A is incorrect because static nested classes do not need (and can't use) a reference to an
instance of the enclosing class. C is incorrect because static nested classes can declare and
define non-static members. E is wrong because…it just is. There's no rule that says an
inner or nested class has to extend anything.

 2. Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

 Which create an anonymous inner class from within class Bar? (Choose all that apply.)
 A. Boo f = new Boo(24) { };

 B. Boo f = new Bar() { };

692 Chapter 8: Inner Classes

 C. Boo f = new Boo() {String s; };

 D. Bar f = new Boo(String s) { };

 E. Boo f = new Boo.Bar(String s) { };

 Answer:

 ✓ B and C. B is correct because anonymous inner classes are no different from any other
class when it comes to polymorphism. That means you are always allowed to declare a
reference variable of the superclass type and have that reference variable refer to an
instance of a subclass type, which in this case is an anonymous subclass of Bar. Since Bar
is a subclass of Boo, it all works. C uses correct syntax for creating an instance of Boo.

 A is incorrect because it passes an int to the Boo constructor, and there is no matching
constructor in the Boo class. D is incorrect because it violates the rules of polymorphism;
you cannot refer to a superclass type using a reference variable declared as the subclass
type. The superclass doesn't have everything the subclass has. E uses incorrect syntax.

 3. Which are true about a method-local inner class? (Choose all that apply.)
 A. It must be marked final
 B. It can be marked abstract
 C. It can be marked public
 D. It can be marked static
 E. It can access private members of the enclosing class

 Answer:

 ✓ B and E. B is correct because a method-local inner class can be abstract, although it
means a subclass of the inner class must be created if the abstract class is to be used (so
an abstract method-local inner class is probably not useful). E is correct because a
method-local inner class works like any other inner class—it has a special relationship to
an instance of the enclosing class, thus it can access all members of the enclosing class.

 A is incorrect because a method-local inner class does not have to be declared final
(although it is legal to do so). C and D are incorrect because a method-local inner class
cannot be made public (remember—local variables can't be public) or static.

 4. Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {

Self Test Answers 693

 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

 What is the result?
 A. An exception occurs at runtime
 B. true

 C. fred

 D. Compilation fails because of an error on line 3
 E. Compilation fails because of an error on line 4
 F. Compilation fails because of an error on line 8
 G. Compilation fails because of an error on a line other than 3, 4, or 8

 Answer:

 ✓ G. This code would be legal if line 7 ended with a semicolon. Remember that line 3 is a
statement that doesn't end until line 7, and a statement needs a closing semicolon!

 A, B, C, D, E, and F are incorrect based on the program logic described above. If the
semicolon were added at line 7, then answer B would be correct—the program would
print true, the return from the equals() method overridden by the anonymous
subclass of Object.

 5. Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

694 Chapter 8: Inner Classes

 What is the result?
 A. An exception occurs at runtime at line 10
 B. Zippo

 C. Compilation fails because of an error on line 3
 D. Compilation fails because of an error on line 9
 E. Compilation fails because of an error on line 10

 Answer:

 ✓ E. If you use a reference variable of type Object, you can access only those members
defined in class Object.

 A, B, C, and D are incorrect based on the program logic described above.

 6. Given:
public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
} }

 What is the result?
 A. 57 22

 B. 45 38

 C. 45 57

 D. An exception occurs at runtime
 E. Compilation fails

Self Test Answers 695

 Answer:

 ✓ A. You can define an inner class as abstract, which means you can instantiate only
concrete subclasses of the abstract inner class. The object referenced by the variable t
is an instance of an anonymous subclass of AbstractTest, and the anonymous class
overrides the getNum() method to return 22. The variable referenced by f is an instance
of an anonymous subclass of Bar, and the anonymous Bar subclass also overrides the
getNum() method (to return 57). Remember that to create a Bar instance, we need an
instance of the enclosing AbstractTest class to tie to the new Bar inner class instance.
AbstractTest can't be instantiated because it's abstract, so we created an anonymous
subclass (non-abstract) and then used the instance of that anonymous subclass to tie
to the new Bar subclass instance.

 B, C, D, and E are incorrect based on the program logic described above.

 7. Given:

 3. public class Tour {
 4. public static void main(String[] args) {
 5. Cathedral c = new Cathedral();
 6. // insert code here
 7. s.go();
 8. }
 9. }
10. class Cathedral {
11. class Sanctum {
12. void go() { System.out.println("spooky"); }
13. }
14. }

 Which, inserted independently at line 6, compile and produce the output "spooky"? (Choose all
that apply.)

 A. Sanctum s = c.new Sanctum();

 B. c.Sanctum s = c.new Sanctum();

 C. c.Sanctum s = Cathedral.new Sanctum();

 D. Cathedral.Sanctum s = c.new Sanctum();

 E. Cathedral.Sanctum s = Cathedral.new Sanctum();

 Answer:

 ✓ D is correct. It is the only code that uses the correct inner class instantiation syntax.

 A, B, C, and E are incorrect based on the above. (Objective 1.1)

696 Chapter 8: Inner Classes

 8. Given:

 5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
 8. public static void main(String[] args) {
 9. new TestInners().go();
10. }
11. void go() {
12. new A().m();
13. class A { void m() { System.out.println("inner"); } }
14. }
15. class A { void m() { System.out.println("middle"); } }
16. }

 What is the result?
 A. inner

 B. outer

 C. middle

 D. Compilation fails
 E. An exception is thrown at runtime

 Answer:

 ✓ C is correct. The "inner" version of class A isn't used because its declaration comes
after the instance of class A is created in the go() method.

 A, B, D, and E are incorrect based on the above. (Objective 1.1)

 9. Given:

 3. public class Car {
 4. class Engine {
 5. // insert code here
 6. }
 7. public static void main(String[] args) {
 8. new Car().go();
 9. }
10. void go() {
11. new Engine();
12. }
13. void drive() { System.out.println("hi"); }
14. }

Self Test Answers 697

 Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)
 A. { Car.drive(); }

 B. { this.drive(); }

 C. { Car.this.drive(); }

 D. { this.Car.this.drive(); }

 E. Engine() { Car.drive(); }

 F. Engine() { this.drive(); }

 G. Engine() { Car.this.drive(); }

 Answer:

 ✓ C and G are correct. C is the correct syntax to access an inner class’s outer instance
method from an initialization block, and G is the correct syntax to access it from
a constructor.

 A, B, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

10. Given:

 3. public class City {
 4. class Manhattan {
 5. void doStuff() throws Exception { System.out.print("x "); }
 6. }
 7. class TimesSquare extends Manhattan {
 8. void doStuff() throws Exception { }
 9. }
10. public static void main(String[] args) throws Exception {
11. new City().go();
12. }
13. void go() throws Exception { new TimesSquare().doStuff(); }
14. }

 What is the result?
 A. x

 B. x x

 C. No output is produced
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 7
 G. Compilation fails due only to an error on line 10
 H. Compilation fails due only to an error on line 13

698 Chapter 8: Inner Classes

Self Test Answers 699

 Answer:

 ✓ C is correct. The inner classes are valid, and all the methods (including main()), correctly
throw an Exception, given that doStuff() throws an Exception. The doStuff() in class
TimesSquare overrides class Manhattan's doStuff() and produces no output.

 A, B, D, E, F, G, and H are incorrect based on the above. (Objectives 1.1, 2.4)

 11. Given:

 3. public class Navel {
 4. private int size = 7;
 5. private static int length = 3;
 6. public static void main(String[] args) {
 7. new Navel().go();
 8. }
 9. void go() {
10. int size = 5;
11. System.out.println(new Gazer().adder());
12. }
13. class Gazer {
14. int adder() { return size * length; }
15. }
16. }

 What is the result?
 A. 15

 B. 21

 C. An exception is thrown at runtime
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 5

 Answer:

 ✓ B is correct. The inner class Gazer has access to Navel's private static and private
instance variables.

 A, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

 12. Given:

 3. import java.util.*;
 4. public class Pockets {
 5. public static void main(String[] args) {
 6. String[] sa = {"nickel", "button", "key", "lint"};
 7. Sorter s = new Sorter();
 8. for(String s2: sa) System.out.print(s2 + " ");
 9. Arrays.sort(sa,s);
10. System.out.println();
11. for(String s2: sa) System.out.print(s2 + " ");
12. }
13. class Sorter implements Comparator<String> {
14. public int compare(String a, String b) {
15. return b.compareTo(a);
16. }
17. }
18. }

 What is the result?
 A. Compilation fails
 B. button key lint nickel

 nickel lint key button

 C. nickel button key lint

 button key lint nickel

 D. nickel button key lint

 nickel button key lint

 E. nickel button key lint

 nickel lint key button

 F. An exception is thrown at runtime

 Answer:

 ✓ A is correct, the inner class Sorter must be declared static to be called from the static
method main(). If Sorter had been static, answer E would be correct.

 B, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4, 6.5)

700 Chapter 8: Inner Classes

9
Threads

CERTIFICATION OBJECTIVES

Start New Threads

Recognize Thread States and
 Transitions

Use Object Locking to Avoid
 Concurrent Access

Write Code That Uses wait(),
 notify(), or notifyAll()

✓ Two-Minute Drill

 Q&A Self Test

702 Chapter 9: Threads

CERTIFICATION OBJECTIVE

Defining, Instantiating, and Starting Threads
(Objective 4.1)

4.1 Write code to define, instantiate, and start new threads using both java.lang.Thread
and java.lang.Runnable.

Imagine a stockbroker application with a lot of complex capabilities. One of
its functions is "download last stock option prices," another is "check prices for
warnings," and a third time-consuming operation is "analyze historical data for
company XYZ."

In a single-threaded runtime environment, these actions execute one after
another. The next action can happen only when the previous one is finished. If a
historical analysis takes half an hour, and the user selects to perform a download and
check afterward, the warning may come too late to, say, buy or sell stock as a result.

We just imagined the sort of application that cries out for multithreading. Ideally,
the download should happen in the background (that is, in another thread). That
way, other processes could happen at the same time so that, for example, a warning
could be communicated instantly. All the while, the user is interacting with other
parts of the application. The analysis, too, could happen in a separate thread, so the
user can work in the rest of the application while the results are being calculated.

So what exactly is a thread? In Java, "thread" means two different things:

■ An instance of class java.lang.Thread

■ A thread of execution

An instance of Thread is just…an object. Like any other object in Java, it has
variables and methods, and lives and dies on the heap. But a thread of execution is
an individual process (a "lightweight" process) that has its own call stack. In Java,
there is one thread per call stack—or, to think of it in reverse, one call stack per
thread. Even if you don't create any new threads in your program, threads are back
there running.

The main() method, that starts the whole ball rolling, runs in one thread, called
(surprisingly) the main thread. If you looked at the main call stack (and you can, any
time you get a stack trace from something that happens after main begins, but not
within another thread), you'd see that main() is the first method on the stack—

Defi ning, Instantiating, and Starting Threads (Exam Objective 4.1) 703

the method at the bottom. But as soon as you create a new thread, a new stack
materializes and methods called from that thread run in a call stack that's separate
from the main() call stack. That second new call stack is said to run concurrently
with the main thread, but we'll refine that notion as we go through this chapter.

You might find it confusing that we're talking about code running concurrently—
as if in parallel—given that there's only one CPU on most of the machines running
Java. What gives? The JVM, which gets its turn at the CPU by whatever scheduling
mechanism the underlying OS uses, operates like a mini-OS and schedules its own
threads regardless of the underlying operating system. In some JVMs, the Java
threads are actually mapped to native OS threads, but we won't discuss that here;
native threads are not on the exam. Nor is it required to understand how threads
behave in different JVM environments. In fact, the most important concept to
understand from this entire chapter is this:

When it comes to threads, very little is guaranteed.

So be very cautious about interpreting the behavior you see on one machine
as "the way threads work." The exam expects you to know what is and is not
guaranteed behavior, so that you can design your program in such a way that it will
work regardless of the underlying JVM. That's part of the whole point of Java.

Don't make the mistake of designing your program to be dependent on a
particular implementation of the JVM. As you'll learn a little later, different
JVMs can run threads in profoundly different ways. For example, one JVM
might be sure that all threads get their turn, with a fairly even amount of time
allocated for each thread in a nice, happy, round-robin fashion. But in other
JVMs, a thread might start running and then just hog the whole show, never
stepping out so others can have a turn. If you test your application on the
"nice turn-taking" JVM, and you don't know what is and is not guaranteed in
Java, then you might be in for a big shock when you run it under a JVM with a
different thread scheduling mechanism.

The thread questions are among the most difficult questions on the exam.
In fact, for most people they are the toughest questions on the exam, and with
four objectives for threads you'll be answering a lot of thread questions. If you're
not already familiar with threads, you'll probably need to spend some time
experimenting. Also, one final disclaimer: This chapter makes almost no attempt to
teach you how to design a good, safe, multithreaded application. We only scratch

the surface of that huge topic in this chapter! You're here to learn the basics of
threading, and what you need to get through the thread questions on the exam.
Before you can write decent multithreaded code, however, you really need to study
more on the complexities and subtleties of multithreaded code.

(Note: The topic of daemon threads is NOT on the exam. All of the threads
discussed in this chapter are "user" threads. You and the operating system can create
a second kind of thread called a daemon thread. The difference between these two
types of threads (user and daemon) is that the JVM exits an application only when
all user threads are complete—the JVM doesn't care about letting daemon threads
complete, so once all user threads are complete, the JVM will shut down, regardless
of the state of any daemon threads. Once again, this topic is NOT on the exam.)

Making a Thread
A thread in Java begins as an instance of java.lang.Thread. You'll find methods
in the Thread class for managing threads including creating, starting, and pausing
them. For the exam, you'll need to know, at a minimum, the following methods:

start()
yield()
sleep()
run()

The action happens in the run() method. Think of the code you want to execute
in a separate thread as the job to do. In other words, you have some work that needs
to be done, say, downloading stock prices in the background while other things
are happening in the program, so what you really want is that job to be executed
in its own thread. So if the work you want done is the job, the one doing the work
(actually executing the job code) is the thread. And the job always starts from a
run() method as follows:

public void run() {
 // your job code goes here
}

You always write the code that needs to be run in a separate thread in a run()
method. The run() method will call other methods, of course, but the thread of
execution—the new call stack—always begins by invoking run(). So where does
the run() method go? In one of the two classes you can use to define your thread job.

You can define and instantiate a thread in one of two ways:

704 Chapter 9: Threads

■ Extend the java.lang.Thread class.

■ Implement the Runnable interface.

You need to know about both for the exam, although in the real world you're
much more likely to implement Runnable than extend Thread. Extending the
Thread class is the easiest, but it's usually not a good OO practice. Why? Because
subclassing should be reserved for specialized versions of more general superclasses.
So the only time it really makes sense (from an OO perspective) to extend Thread is
when you have a more specialized version of a Thread class. In other words, because
you have more specialized thread-specific behavior. Chances are, though, that the
thread work you want is really just a job to be done by a thread. In that case, you
should design a class that implements the Runnable interface, which also leaves your
class free to extend some other class.

Defi ning a Thread
To define a thread, you need a place to put your run() method, and as we just
discussed, you can do that by extending the Thread class or by implementing the
Runnable interface. We'll look at both in this section.

Extending java.lang.Thread
The simplest way to define code to run in a separate thread is to

■ Extend the java.lang.Thread class.

■ Override the run() method.

It looks like this:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
 }

The limitation with this approach (besides being a poor design choice in most
cases) is that if you extend Thread, you can't extend anything else. And it's not as if
you really need that inherited Thread class behavior, because in order to use a thread
you'll need to instantiate one anyway.

Defi ning a Thread (Exam Objective 4.1) 705

Keep in mind that you're free to overload the run() method in your Thread
subclass:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
 public void run(String s) {
 System.out.println("String in run is " + s);
 }
}

But know this: The overloaded run(String s) method will be ignored by the
Thread class unless you call it yourself. The Thread class expects a run() method
with no arguments, and it will execute this method for you in a separate call stack
after the thread has been started. With a run(String s) method, the Thread
class won't call the method for you, and even if you call the method directly
yourself, execution won't happen in a new thread of execution with a separate
call stack. It will just happen in the same call stack as the code that you made the
call from, just like any other normal method call.

Implementing java.lang.Runnable
Implementing the Runnable interface gives you a way to extend any class you like,
but still define behavior that will be run by a separate thread. It looks like this:

class MyRunnable implements Runnable {
 public void run() {
 System.out.println("Important job running in MyRunnable");
 }
}

Regardless of which mechanism you choose, you've now got yourself some code
that can be run by a thread of execution. So now let's take a look at instantiating your
thread-capable class, and then we'll figure out how to actually get the thing running.

Instantiating a Thread
Remember, every thread of execution begins as an instance of class Thread.
Regardless of whether your run() method is in a Thread subclass or a Runnable
implementation class, you still need a Thread object to do the work.

706 Chapter 9: Threads

If you extended the Thread class, instantiation is dead simple (we'll look at some
additional overloaded constructors in a moment):

MyThread t = new MyThread()

If you implement Runnable, instantiation is only slightly less simple. To have
code run by a separate thread, you still need a Thread instance. But rather than
combining both the thread and the job (the code in the run()method) into one
class, you've split it into two classes—the Thread class for the thread-specific code
and your Runnable implementation class for your job-that-should-be-run-by-a-
thread code. (Another common way to think about this is that the Thread is the
"worker," and the Runnable is the "job" to be done.)

First, you instantiate your Runnable class:

MyRunnable r = new MyRunnable();

Next, you get yourself an instance of java.lang.Thread (somebody has to run your
job…), and you give it your job!

Thread t = new Thread(r); // Pass your Runnable to the Thread

If you create a thread using the no-arg constructor, the thread will call its own
run() method when it's time to start working. That's exactly what you want when
you extend Thread, but when you use Runnable, you need to tell the new thread to
use your run()method rather than its own. The Runnable you pass to the Thread
constructor is called the target or the target Runnable.

You can pass a single Runnable instance to multiple Thread objects, so that the
same Runnable becomes the target of multiple threads, as follows:

public class TestThreads {
 public static void main (String [] args) {
 MyRunnable r = new MyRunnable();
 Thread foo = new Thread(r);
 Thread bar = new Thread(r);
 Thread bat = new Thread(r);
 }
}

Giving the same target to multiple threads means that several threads of
execution will be running the very same job (and that the same job will be done
multiple times).

Instantiating a Thread (Exam Objective 4.1) 707

Besides the no-arg constructor and the constructor that takes a Runnable (the
target, i.e., the instance with the job to do), there are other overloaded constructors
in class Thread. The constructors we care about are

■ Thread()

■ Thread(Runnable target)

■ Thread(Runnable target, String name)

■ Thread(String name)

You need to recognize all of them for the exam! A little later, we'll discuss some of
the other constructors in the preceding list.

So now you've made yourself a Thread instance, and it knows which run()
method to call. But nothing is happening yet. At this point, all we've got is a plain
old Java object of type Thread. It is not yet a thread of execution. To get an actual
thread—a new call stack—we still have to start the thread.

When a thread has been instantiated but not started (in other words, the
start() method has not been invoked on the Thread instance), the thread is
said to be in the new state. At this stage, the thread is not yet considered to be
alive. Once the start() method is called, the thread is considered to be alive
(even though the run() method may not have actually started executing yet). A
thread is considered dead (no longer alive) after the run() method completes. The
isAlive() method is the best way to determine if a thread has been started but has
not yet completed its run() method. (Note: The getState() method is very useful
for debugging, but you won't have to know it for the exam.)

708 Chapter 9: Threads

The Thread class itself implements Runnable. (After all, it has a run()
method that we were overriding.) This means that you could pass a Thread to another
Thread’s constructor:

Thread t = new Thread(new MyThread());

This is a bit silly, but it’s legal. In this case, you really just need a
Runnnable, and creating a whole other Thread is overkill.

Starting a Thread
You've created a Thread object and it knows its target (either the passed-in
Runnable or itself if you extended class Thread). Now it's time to get the whole
thread thing happening—to launch a new call stack. It's so simple it hardly deserves
its own subheading:

t.start();

Prior to calling start() on a Thread instance, the thread (when we use
lowercase t, we're referring to the thread of execution rather than the Thread class)
is said to be in the new state as we said. The new state means you have a Thread
object but you don't yet have a true thread. So what happens after you call start()?
The good stuff:

■ A new thread of execution starts (with a new call stack).

■ The thread moves from the new state to the runnable state.

■ When the thread gets a chance to execute, its target run() method will run.

Be sure you remember the following: You start a Thread, not a Runnable. You call
start() on a Thread instance, not on a Runnable instance. The following example
demonstrates what we've covered so far—defining, instantiating, and starting a
thread:

class FooRunnable implements Runnable {
 public void run() {
 for(int x = 1; x < 6; x++) {
 System.out.println("Runnable running");
 }
 }
}

public class TestThreads {
 public static void main (String [] args) {
 FooRunnable r = new FooRunnable();
 Thread t = new Thread(r);
 t.start();

 }
}

Starting a Thread (Exam Objective 4.1) 709

Running the preceding code prints out exactly what you'd expect:

% java TestThreads
Runnable running
Runnable running
Runnable running
Runnable running
Runnable running

(If this isn't what you expected, go back and re-read everything in this objective.)

So what happens if we start multiple threads? We'll run a simple example in a
moment, but first we need to know how to print out which thread is executing.
We can use the getName() method of class Thread, and have each Runnable print
out the name of the thread executing that Runnable object's run() method. The
following example instantiates a thread and gives it a name, and then the name is
printed out from the run() method:

class NameRunnable implements Runnable {
 public void run() {
 System.out.println("NameRunnable running");
 System.out.println("Run by "
 + Thread.currentThread().getName());

710 Chapter 9: Threads

There’s nothing special about the run() method as far as Java is
concerned. Like main(), it just happens to be the name (and signature) of the method
that the new thread knows to invoke. So if you see code that calls the run() method on
a Runnable (or even on a Thread instance), that’s perfectly legal. But it doesn’t mean the
run() method will run in a separate thread! Calling a run() method directly just means
you’re invoking a method from whatever thread is currently executing, and the run()
method goes onto the current call stack rather than at the beginning of a new call stack.
The following code does not start a new thread of execution:

 Thread t = new Thread();
 t.run(); // Legal, but does not start a new thread

 }
}
public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 t.setName("Fred");
 t.start();
 }
}

Running this code produces the following, extra special, output:

% java NameThread
NameRunnable running
Run by Fred

To get the name of a thread you call—who would have guessed—getName() on
the Thread instance. But the target Runnable instance doesn't even have a reference
to the Thread instance, so we first invoked the static Thread.currentThread()
method, which returns a reference to the currently executing thread, and then we
invoked getName() on that returned reference.

Even if you don't explicitly name a thread, it still has a name. Let's look at the
previous code, commenting out the statement that sets the thread's name:

public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 // t.setName("Fred");
 t.start();
 }
}

Running the preceding code now gives us

% java NameThread
NameRunnable running
Run by Thread-0

And since we're getting the name of the current thread by using the static
Thread.currentThread() method, we can even get the name of the thread
running our main code,

Starting a Thread (Exam Objective 4.1) 711

public class NameThreadTwo {
 public static void main (String [] args) {
 System.out.println("thread is "
 + Thread.currentThread().getName());
 }
}

which prints out

% java NameThreadTwo
thread is main

That's right, the main thread already has a name—main. (Once again, what are
the odds?) Figure 9-1 shows the process of starting a thread.

712 Chapter 9: Threads

 FIGURE 9-1

Starting a thread
public static void main(String [] args) {

// running

// some code

// in main()

// running

//

//

more code

static void method2() {
Runnable r = new MyRunnable();

Thread t = new Thread(r);

t.start();

do more stuff

}

}

method2();

1) main() begins

main

main

run

method2

stack A

stack A

main

method2

stack Astack B
(thread t) (main thread)

3) method2() starts a new thread

2) main() invokes method2()

Starting and Running Multiple Threads
Enough playing around here; let's actually get multiple threads going (more than
two, that is). We already had two threads, because the main() method starts in a
thread of its own, and then t.start() started a second thread. Now we'll do more.
The following code creates a single Runnable instance and three Thread instances.
All three Thread instances get the same Runnable instance, and each thread is
given a unique name. Finally, all three threads are started by invoking start() on
the Thread instances.

class NameRunnable implements Runnable {
 public void run() {
 for (int x = 1; x <= 3; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
 }
}
public class ManyNames {
 public static void main(String [] args) {
 // Make one Runnable
 NameRunnable nr = new NameRunnable();
 Thread one = new Thread(nr);
 Thread two = new Thread(nr);
 Thread three = new Thread(nr);

 one.setName("Fred");
 two.setName("Lucy");
 three.setName("Ricky");
 one.start();
 two.start();
 three.start();
 }
}

Running this code might produce the following:

% java ManyNames
Run by Fred, x is 1
Run by Fred, x is 2
Run by Fred, x is 3

Starting a Thread (Exam Objective 4.1) 713

Run by Lucy, x is 1
Run by Lucy, x is 2
Run by Lucy, x is 3
Run by Ricky, x is 1
Run by Ricky, x is 2
Run by Ricky, x is 3

Well, at least that's what it printed when we ran it—this time, on our machine.
But the behavior you see above is not guaranteed. This is so crucial that you need
to stop right now, take a deep breath, and repeat after me, "The behavior is not
guaranteed." You need to know, for your future as a Java programmer as well as for
the exam, that there is nothing in the Java specification that says threads will start
running in the order in which they were started (in other words, the order in which
start() was invoked on each thread). And there is no guarantee that once a thread
starts executing, it will keep executing until it's done. Or that a loop will complete
before another thread begins. No siree Bob. Nothing is guaranteed in the preceding
code except this:

Each thread will start, and each thread will run to completion.

Within each thread, things will happen in a predictable order. But the actions
of different threads can mix together in unpredictable ways. If you run the program
multiple times, or on multiple machines, you may see different output. Even if
you don't see different output, you need to realize that the behavior you see is not
guaranteed. Sometimes a little change in the way the program is run will cause a
difference to emerge. Just for fun we bumped up the loop code so that each run()
method ran the for loop 400 times rather than 3, and eventually we did start to see
some wobbling:

public void run() {
 for (int x = 1; x <= 400; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
}

Running the preceding code, with each thread executing its run loop 400 times,
started out fine but then became nonlinear. Here's just a snip from the command-

714 Chapter 9: Threads

Starting a Thread (Exam Objective 4.1) 715

line output of running that code. To make it easier to distinguish each thread, we
put Fred's output in italics and Lucy's in bold, and left Ricky's alone:

Run by Fred, x is 345
Run by Ricky, x is 313
Run by Lucy, x is 341
Run by Ricky, x is 314
Run by Lucy, x is 342
Run by Ricky, x is 315
Run by Fred, x is 346
Run by Lucy, x is 343
Run by Fred, x is 347
Run by Lucy, x is 344
... it continues on ...
Notice that there's not really any clear pattern here. If we look at only the output

from Fred, we see the numbers increasing one at a time, as expected:

Run by Fred, x is 345
Run by Fred, x is 346
Run by Fred, x is 347

And similarly if we look only at the output from Lucy, or Ricky. Each one
individually is behaving in a nice orderly manner. But together—chaos! In the
fragment above we see Fred, then Lucy, then Ricky (in the same order we originally
started the threads), but then Lucy butts in when it was Fred's turn. What nerve!
And then Ricky and Lucy trade back and forth for a while until finally Fred gets
another chance. They jump around like this for a while after this. Eventually
(after the part shown above) Fred finishes, then Ricky, and finally Lucy finishes
with a long sequence of output. So even though Ricky was started third, he actually

completed second. And if we run it again, we'll get a different result. Why? Because
it's up to the scheduler, and we don't control the scheduler! Which brings up
another key point to remember: Just because a series of threads are started in a
particular order doesn't mean they'll run in that order. For any group of started
threads, order is not guaranteed by the scheduler. And duration is not guaranteed.
You don't know, for example, if one thread will run to completion before the others
have a chance to get in or whether they'll all take turns nicely, or whether they'll do
a combination of both. There is a way, however, to start a thread but tell it not to
run until some other thread has finished. You can do this with the join() method,
which we'll look at a little later.

A thread is done being a thread when its target run() method completes.

When a thread completes its run() method, the thread ceases to be a thread of
execution. The stack for that thread dissolves, and the thread is considered dead.
(Technically the API calls a dead thread "terminated", but we'll use "dead" in this
chapter.) Not dead and gone, however, just dead. It's still a Thread object, just not a
thread of execution. So if you've got a reference to a Thread instance, then even when
that Thread instance is no longer a thread of execution, you can still call methods
on the Thread instance, just like any other Java object. What you can't do, though,
is call start() again.

Once a thread has been started, it can never be started again.

If you have a reference to a Thread, and you call start(), it's started. If you call
start() a second time, it will cause an exception (an IllegalThreadStateException,
which is a kind of RuntimeException, but you don't need to worry about the exact
type). This happens whether or not the run() method has completed from the first
start() call. Only a new thread can be started, and then only once. A runnable
thread or a dead thread cannot be restarted.

So far, we've seen three thread states: new, runnable, and dead. We'll look at more
thread states before we're done with this chapter.

716 Chapter 9: Threads

In addition to using setName() and getName to identify threads, you
might see getld(). The getld() method returns a positive, unique, long number, and that
number will be that thread's only ID number for the thread's entire life.

Starting a Thread (Exam Objective 4.1) 717

The Thread Scheduler
The thread scheduler is the part of the JVM (although most JVMs map Java threads
directly to native threads on the underlying OS) that decides which thread should
run at any given moment, and also takes threads out of the run state. Assuming a
single processor machine, only one thread can actually run at a time. Only one stack
can ever be executing at one time. And it's the thread scheduler that decides which
thread—of all that are eligible—will actually run. When we say eligible, we really
mean in the runnable state.

Any thread in the runnable state can be chosen by the scheduler to be the one and
only running thread. If a thread is not in a runnable state, then it cannot be chosen to be
the currently running thread. And just so we're clear about how little is guaranteed here:

The order in which runnable threads are chosen to run is not guaranteed.

Although queue behavior is typical, it isn't guaranteed. Queue behavior means
that when a thread has finished with its "turn," it moves to the end of the line of the
runnable pool and waits until it eventually gets to the front of the line, where it can
be chosen again. In fact, we call it a runnable pool, rather than a runnable queue, to
help reinforce the fact that threads aren't all lined up in some guaranteed order.

Although we don't control the thread scheduler (we can't, for example, tell a
specific thread to run), we can sometimes influence it. The following methods give us
some tools for influencing the scheduler. Just don't ever mistake influence for control.

Methods from the java.lang.Thread Class Some of the methods that can
help us influence thread scheduling are as follows:

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join() throws InterruptedException

public final void setPriority(int newPriority)

Note that both sleep() and join() have overloaded versions not shown here.

Expect to see exam questions that look for your understanding of
what is and is not guaranteed! You must be able to look at thread code and determine
whether the output is guaranteed to run in a particular way or is indeterminate.

Methods from the java.lang.Object Class Every class in Java inherits the
following three thread-related methods:

 public final void wait() throws InterruptedException
public final void notify()
public final void notifyAll()

The wait() method has three overloaded versions (including the one listed here).
We'll look at the behavior of each of these methods in this chapter. First, though,

we're going to look at the different states a thread can be in.

CERTIFICATION OBJECTIVE

Thread States and Transitions (Objective 4.2)
4.2 Recognize the states in which a thread can exist, and identify ways in which a thread
can transition from one state to another.

We've already seen three thread states— new, runnable, and dead—but wait!
There's more! The thread scheduler's job is to move threads in and out of the
running state. While the thread scheduler can move a thread from the running state
back to runnable, other factors can cause a thread to move out of running, but not
back to runnable. One of these is when the thread's run()method completes, in
which case the thread moves from the running state directly to the dead state. Next
we'll look at some of the other ways in which a thread can leave the running state,
and where the thread goes.

Thread States
A thread can be only in one of five states (see Figure 9-2):

■ New This is the state the thread is in after the Thread instance has been
created, but the start() method has not been invoked on the thread. It is
a live Thread object, but not yet a thread of execution. At this point, the
thread is considered not alive.

718 Chapter 9: Threads

■ Runnable This is the state a thread is in when it's eligible to run, but the
scheduler has not selected it to be the running thread. A thread first enters
the runnable state when the start() method is invoked, but a thread can
also return to the runnable state after either running or coming back from a
blocked, waiting, or sleeping state. When the thread is in the runnable state,
it is considered alive.

■ Running This is it. The "big time." Where the action is. This is the state a
thread is in when the thread scheduler selects it (from the runnable pool) to
be the currently executing process. A thread can transition out of a running
state for several reasons, including because "the thread scheduler felt like it."
We'll look at those other reasons shortly. Note that in Figure 9-2, there are
several ways to get to the runnable state, but only one way to get to the running
state: the scheduler chooses a thread from the runnable pool.

■ Waiting/blocked/sleeping This is the state a thread is in when it's not
eligible to run. Okay, so this is really three states combined into one,
but they all have one thing in common: the thread is still alive, but is
currently not eligible to run. In other words, it is not runnable, but it might
return to a runnable state later if a particular event occurs. A thread may be
blocked waiting for a resource (like I/O or an object's lock), in which case the
event that sends it back to runnable is the availability of the resource—for
example, if data comes in through the input stream the thread code is reading
from, or if the object's lock suddenly becomes available. A thread may be
sleeping because the thread's run code tells it to sleep for some period of time,
in which case the event that sends it back to runnable is that it wakes up
because its sleep time has expired. Or the thread may be waiting, because the
thread's run code causes it to wait, in which case the event that sends it back
to runnable is that another thread sends a notification that it may no longer
be necessary for the thread to wait. The important point is that one thread

Thread States (Exam Objective 4.2) 719

 FIGURE 9-2

Transitioning
between
thread states

Waiting/
blocking

New Runnable Running Dead

does not tell another thread to block. Some methods may look like they tell
another thread to block, but they don't. If you have a reference t to another
thread, you can write something like this:

 t.sleep(); or t.yield()

But those are actually static methods of the Thread class—they don't affect the
instance t; instead they are defined to always affect the thread that's currently
executing. (This is a good example of why it's a bad idea to use an instance
variable to access a static method—it's misleading. There is a method,
suspend(), in the Thread class, that lets one thread tell another to suspend,
but the suspend() method has been deprecated and won't be on the exam
(nor will its counterpart resume()). There is also a stop() method, but
it too has been deprecated and we won't even go there. Both suspend()
and stop() turned out to be very dangerous, so you shouldn't use them and
again, because they're deprecated, they won't appear on the exam. Don't
study 'em, don't use 'em. Note also that a thread in a blocked state is still
considered to be alive.

■ Dead A thread is considered dead when its run() method completes. It
may still be a viable Thread object, but it is no longer a separate thread of
execution. Once a thread is dead, it can never be brought back to life! (The
whole "I see dead threads" thing.) If you invoke start() on a dead Thread
instance, you'll get a runtime (not compiler) exception. And it probably
doesn't take a rocket scientist to tell you that if a thread is dead, it is no
longer considered to be alive.

Preventing Thread Execution
A thread that's been stopped usually means a thread that's moved to the dead state.
But Objective 4.2 is also looking for your ability to recognize when a thread will get
kicked out of running but not be sent back to either runnable or dead.

For the purpose of the exam, we aren't concerned with a thread blocking on I/O
(say, waiting for something to arrive from an input stream from the server). We are
concerned with the following:

720 Chapter 9: Threads

■ Sleeping

■ Waiting

■ Blocked because it needs an object's lock

Sleeping
The sleep() method is a static method of class Thread. You use it in your code
to "slow a thread down" by forcing it to go into a sleep mode before coming back to
runnable (where it still has to beg to be the currently running thread). When a thread
sleeps, it drifts off somewhere and doesn't return to runnable until it wakes up.

So why would you want a thread to sleep? Well, you might think the thread is
moving too quickly through its code. Or you might need to force your threads to
take turns, since reasonable turn-taking isn't guaranteed in the Java specification.
Or imagine a thread that runs in a loop, downloading the latest stock prices and
analyzing them. Downloading prices one after another would be a waste of time, as
most would be quite similar—and even more important, it would be an incredible
waste of precious bandwidth. The simplest way to solve this is to cause a thread to
pause (sleep) for five minutes after each download.

You do this by invoking the static Thread.sleep() method, giving it a time in
milliseconds as follows:

try {
 Thread.sleep(5*60*1000); // Sleep for 5 minutes
} catch (InterruptedException ex) { }

Notice that the sleep() method can throw a checked InterruptedException
(you'll usually know if that is a possibility, since another thread has to explicitly do
the interrupting), so you must acknowledge the exception with a handle or declare.
Typically, you wrap calls to sleep() in a try/catch, as in the preceding code.

Let's modify our Fred, Lucy, Ricky code by using sleep() to try to force the
threads to alternate rather than letting one thread dominate for any period of time.
Where do you think the sleep() method should go?

class NameRunnable implements Runnable {
 public void run() {

 for (int x = 1; x < 4; x++) {

 System.out.println("Run by "
 + Thread.currentThread().getName());

Sleeping (Exam Objective 4.2) 721

 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) { }
 }
 }
}

public class ManyNames {
 public static void main (String [] args) {

 // Make one Runnable
 NameRunnable nr = new NameRunnable();

 Thread one = new Thread(nr);
 one.setName("Fred");
 Thread two = new Thread(nr);
 two.setName("Lucy");
 Thread three = new Thread(nr);
 three.setName("Ricky");

 one.start();
 two.start();

 three.start();
 }
}

Running this code shows Fred, Lucy, and Ricky alternating nicely:

% java ManyNames
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky

Just keep in mind that the behavior in the preceding output is still not guaranteed.
You can't be certain how long a thread will actually run before it gets put to sleep,
so you can't know with certainty that only one of the three threads will be in the
runnable state when the running thread goes to sleep. In other words, if there are

722 Chapter 9: Threads

two threads awake and in the runnable pool, you can't know with certainty that
the least recently used thread will be the one selected to run. Still, using sleep()
is the best way to help all threads get a chance to run! Or at least to guarantee that
one thread doesn't get in and stay until it's done. When a thread encounters a sleep
call, it must go to sleep for at least the specified number of milliseconds (unless
it is interrupted before its wake-up time, in which case it immediately throws the
InterruptedException).

Remember that sleep() is a static method, so don't be fooled into thinking that
one thread can put another thread to sleep. You can put sleep() code anywhere,
since all code is being run by some thread. When the executing code (meaning the
currently running thread's code) hits a sleep() call, it puts the currently running
thread to sleep.

EXERCISE 9-1

 Creating a Thread and Putting It to Sleep
In this exercise we will create a simple counting thread. It will count to 100, pausing
one second between each number. Also, in keeping with the counting theme, it will
output a string every ten numbers.

Sleeping (Exam Objective 4.2) 723

Just because a thread’s sleep() expires, and it wakes up, does not mean
it will return to running! Remember, when a thread wakes up, it simply goes back to
the runnable state. So the time specifi ed in sleep() is the minimum duration in which
the thread won’t run, but it is not the exact duration in which the thread won’t run. So
you can’t, for example, rely on the sleep() method to give you a perfectly accurate
timer. Although in many applications using sleep() as a timer is certainly good enough,
you must know that a sleep() time is not a guarantee that the thread will start running
again as soon as the time expires and the thread wakes.

1. Create a class and extend the Thread class. As an option, you can implement
 the Runnable interface.

2. Override the run() method of Thread. This is where the code will go that will
 output the numbers.

3. Create a for loop that will loop 100 times. Use the modulo operation to
 check whether there are any remainder numbers when divided by 10.

4. Use the static method Thread.sleep() to pause. (Remember, the one-arg
version of sleep() specifies the amount of time of sleep in milliseconds.)

Thread Priorities and yield()
To understand yield(), you must understand the concept of thread priorities.
Threads always run with some priority, usually represented as a number between 1
and 10 (although in some cases the range is less than 10). The scheduler in most
JVMs uses preemptive, priority-based scheduling (which implies some sort
of time slicing). This does not mean that all JVMs use time slicing. The JVM
specification does not require a VM to implement a time-slicing scheduler, where
each thread is allocated a fair amount of time and then sent back to runnable to give
another thread a chance. Although many JVMs do use time slicing, some may use
a scheduler that lets one thread stay running until the thread completes its run()
method.

In most JVMs, however, the scheduler does use thread priorities in one important
way: If a thread enters the runnable state, and it has a higher priority than any of
the threads in the pool and a higher priority than the currently running thread,
the lower-priority running thread usually will be bumped back to runnable and the
highest-priority thread will be chosen to run. In other words, at any given time the
currently running thread usually will not have a priority that is lower than any of
the threads in the pool. In most cases, the running thread will be of equal or greater
priority than the highest priority threads in the pool. This is as close to a guarantee
about scheduling as you'll get from the JVM specification, so you must never rely on
thread priorities to guarantee the correct behavior of your program.

Don't rely on thread priorities when designing your multithreaded application.
Because thread-scheduling priority behavior is not guaranteed, use thread
priorities as a way to improve the effi ciency of your program, but just be sure
your program doesn't depend on that behavior for correctness.

724 Chapter 9: Threads

What is also not guaranteed is the behavior when threads in the pool are of equal
priority, or when the currently running thread has the same priority as threads in the
pool. All priorities being equal, a JVM implementation of the scheduler is free to do
just about anything it likes. That means a scheduler might do one of the following
(among other things):

■ Pick a thread to run, and run it there until it blocks or completes.

■ Time slice the threads in the pool to give everyone an equal opportunity to run.

Setting a Thread's Priority A thread gets a default priority that is the priority
of the thread of execution that creates it. For example, in the code

public class TestThreads {
 public static void main (String [] args) {
 MyThread t = new MyThread();
 }
}

the thread referenced by t will have the same priority as the main thread, since the
main thread is executing the code that creates the MyThread instance.

You can also set a thread's priority directly by calling the setPriority() method
on a Thread instance as follows:

FooRunnable r = new FooRunnable();
Thread t = new Thread(r);
t.setPriority(8);

t.start();

Priorities are set using a positive integer, usually between 1 and 10, and the JVM
will never change a thread's priority. However, the values 1 through 10 are not
guaranteed. Some JVM's might not recognize ten distinct values. Such a JVM might
merge values from 1 to 10 down to maybe values from 1 to 5, so if you have, say, ten
threads each with a different priority, and the current application is running in a
JVM that allocates a range of only five priorities, then two or more threads might be
mapped to one priority.

Although the default priority is 5, the Thread class has the three following
constants (static final variables) that define the range of thread priorities:

Thread Priorities and yield() (Exam Objective 4.2) 725

Thread.MIN_PRIORITY (1)
Thread.NORM_PRIORITY (5)
Thread.MAX_PRIORITY (10)

The yield() Method So what does the static Thread.yield() have to
do with all this? Not that much, in practice. What yield() is supposed to do is
make the currently running thread head back to runnable to allow other threads of
the same priority to get their turn. So the intention is to use yield() to promote
graceful turn-taking among equal-priority threads. In reality, though, the yield()
method isn't guaranteed to do what it claims, and even if yield() does cause a
thread to step out of running and back to runnable, there's no guarantee the yielding
thread won't just be chosen again over all the others! So while yield() might—and
often does—make a running thread give up its slot to another runnable thread of the
same priority, there's no guarantee.
 A yield() won't ever cause a thread to go to the waiting/sleeping/ blocking
state. At most, a yield() will cause a thread to go from running to runnable, but
again, it might have no effect at all.

The join() Method
The non-static join() method of class Thread lets one thread "join onto the end"
of another thread. If you have a thread B that can't do its work until another thread
A has completed its work, then you want thread B to "join" thread A. This means that
thread B will not become runnable until A has finished (and entered the dead state).

Thread t = new Thread();
t.start();
t.join();

The preceding code takes the currently running thread (if this were in the
main() method, then that would be the main thread) and joins it to the end of the
thread referenced by t. This blocks the current thread from becoming runnable
until after the thread referenced by t is no longer alive. In other words, the
code t.join() means "Join me (the current thread) to the end of t, so that t
must finish before I (the current thread) can run again." You can also call one
of the overloaded versions of join() that takes a timeout duration, so that
you're saying, "wait until thread t is done, but if it takes longer than 5,000
milliseconds, then stop waiting and become runnable anyway." Figure 9-3 shows
the effect of the join() method.

726 Chapter 9: Threads

So far we've looked at three ways a running thread could leave the running state:

■ A call to sleep() Guaranteed to cause the current thread to stop execut-
ing for at least the specified sleep duration (although it might be interrupted
before its specified time).

■ A call to yield() Not guaranteed to do much of anything, although
typically it will cause the currently running thread to move back to runnable
so that a thread of the same priority can have a chance.

■ A call to join() Guaranteed to cause the current thread to stop execut-
ing until the thread it joins with (in other words, the thread it calls join()

Thread Priorities and yield() (Exam Objective 4.2) 727

 FIGURE 9-3 The join() method

Key Events in the Threads’ Code

doStuff()

doStuff() doOther()

Stack A is
running

Stack B is
running

Stack A is
running

Stack B
doOther()

doStuff()

Stack A joined
to Stack B

Stack A

Output

A is running

Thread b = new Thread(aRunnable);
b.start();

b.join(); // A joins to the end
// of B

// Thread B completes !!
// Thread A starts again !

// Threads bounce back and forth

A is running
A is running
A is running
A is running
A is running
A is running

A is running
A is running

A is running

A is running

B is running

B is running

B is running
B is running

B is running

B is running
B is running
B is running
B is running
B is running
B is running
B is running
B is running

A is running

A is running
A is running
A is running
A is running
A is running
A is running

B is running

on) completes, or if the thread it's trying to join with is not alive, however,
the current thread won't need to back out.

Besides those three, we also have the following scenarios in which a thread might
leave the running state:

■ The thread's run() method completes. Duh.

■ A call to wait() on an object (we don't call wait() on a thread, as we'll
 see in a moment).

■ A thread can't acquire the lock on the object whose method code it's
 attempting to run.

■ The thread scheduler can decide to move the current thread from running
 to runnable in order to give another thread a chance to run. No reason is
 needed—the thread scheduler can trade threads in and out whenever it likes.

CERTIFICATION OBJECTIVE

Synchronizing Code (Objective 4.3)
4.3 Given a scenario, write code that makes appropriate use of object locking to
protect static or instance variables from concurrent access problems.

Can you imagine the havoc that can occur when two different threads have access
to a single instance of a class, and both threads invoke methods on that object…and
those methods modify the state of the object? In other words, what might happen
if two different threads call, say, a setter method on a single object? A scenario
like that might corrupt an object's state (by changing its instance variable values in
an inconsistent way), and if that object's state is data shared by other parts of the
program, well, it's too scary to even visualize.

But just because we enjoy horror, let's look at an example of what might happen.
The following code demonstrates what happens when two different threads are
accessing the same account data. Imagine that two people each have a checkbook
for a single checking account (or two people each have ATM cards, but both cards
are linked to only one account).

728 Chapter 9: Threads

In this example, we have a class called Account that represents a bank account.
To keep the code short, this account starts with a balance of 50, and can be used
only for withdrawals. The withdrawal will be accepted even if there isn't enough
money in the account to cover it. The account simply reduces the balance by the
amount you want to withdraw:

class Account {
 private int balance = 50;
 public int getBalance() {
 return balance;
 }
 public void withdraw(int amount) {
 balance = balance - amount;
 }
}

Now here's where it starts to get fun. Imagine a couple, Fred and Lucy, who both
have access to the account and want to make withdrawals. But they don't want the
account to ever be overdrawn, so just before one of them makes a withdrawal, he or
she will first check the balance to be certain there's enough to cover the withdrawal.
Also, withdrawals are always limited to an amount of 10, so there must be at least 10
in the account balance in order to make a withdrawal. Sounds reasonable. But that's
a two-step process:

1. Check the balance.

2. If there's enough in the account (in this example, at least 10), make the
withdrawal.

What happens if something separates step 1 from step 2? For example, imagine
what would happen if Lucy checks the balance and sees that there's just exactly
enough in the account, 10. But before she makes the withdrawal, Fred checks the
balance and also sees that there's enough for his withdrawal. Since Lucy has verified
the balance, but not yet made her withdrawal, Fred is seeing "bad data." He is seeing
the account balance before Lucy actually debits the account, but at this point that
debit is certain to occur. Now both Lucy and Fred believe there's enough to make
their withdrawals. So now imagine that Lucy makes her withdrawal, and now there
isn't enough in the account for Fred's withdrawal, but he thinks there is since when
he checked, there was enough! Yikes. In a minute we'll see the actual banking code,
with Fred and Lucy, represented by two threads, each acting on the same Runnable,
and that Runnable holds a reference to the one and only account instance—so, two
threads, one account.

Synchronizing Code (Exam Objective 4.3) 729

The logic in our code example is as follows:

1. The Runnable object holds a reference to a single account.

2. Two threads are started, representing Lucy and Fred, and each thread is
given a reference to the same Runnable (which holds a reference to the
actual account)

3. The initial balance on the account is 50, and each withdrawal is exactly 10.

4. In the run() method, we loop 5 times, and in each loop we

■ Make a withdrawal (if there's enough in the account).

■ Print a statement if the account is overdrawn (which it should never be,
 since we check the balance before making a withdrawal).

5. The makeWithdrawal() method in the test class (representing the behavior
of Fred or Lucy) will do the following:

■ Check the balance to see if there's enough for the withdrawal.

■ If there is enough, print out the name of the one making the withdrawal.

■ Go to sleep for 500 milliseconds—just long enough to give the other
partner a chance to get in before you actually make the withdrawal.

■ Upon waking up, complete the withdrawal and print that fact.

■ If there wasn't enough in the first place, print a statement showing who you
are and the fact that there wasn't enough.

So what we're really trying to discover is if the following is possible: for one partner
to check the account and see that there's enough, but before making the actual
withdrawal, the other partner checks the account and also sees that there's enough.
When the account balance gets to 10, if both partners check it before making the
withdrawal, both will think it's OK to withdraw, and the account will overdraw by 10!

Here's the code:

public class AccountDanger implements Runnable {
 private Account acct = new Account();
 public static void main (String [] args) {
 AccountDanger r = new AccountDanger();
 Thread one = new Thread(r);
 Thread two = new Thread(r);
 one.setName("Fred");
 two.setName("Lucy");

730 Chapter 9: Threads

 one.start();
 two.start();
 }
 public void run() {
 for (int x = 0; x < 5; x++) {
 makeWithdrawal(10);
 if (acct.getBalance() < 0) {
 System.out.println("account is overdrawn!");
 }
 }
 }
 private void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName()

 + " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName()

 + " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "

 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());

 }
 }
}

So what happened? Is it possible that, say, Lucy checked the balance, fell asleep,
Fred checked the balance, Lucy woke up and completed her withdrawal, then Fred
completes his withdrawal, and in the end they overdraw the account? Look at the
(numbered) output:

% java AccountDanger
 1. Fred is going to withdraw
 2. Lucy is going to withdraw
 3. Fred completes the withdrawal
 4. Fred is going to withdraw
 5. Lucy completes the withdrawal
 6. Lucy is going to withdraw
 7. Fred completes the withdrawal
 8. Fred is going to withdraw
 9. Lucy completes the withdrawal

Synchronizing Code (Exam Objective 4.3) 731

732 Chapter 9: Threads

10. Lucy is going to withdraw
11. Fred completes the withdrawal
12. Not enough in account for Fred to withdraw 0
13. Not enough in account for Fred to withdraw 0
14. Lucy completes the withdrawal
15. account is overdrawn!
16. Not enough in account for Lucy to withdraw -10
17. account is overdrawn!
18. Not enough in account for Lucy to withdraw -10
19. account is overdrawn!

Although each time you run this code the output might be a little different, let's
walk through this particular example using the numbered lines of output. For the
first four attempts, everything is fine. Fred checks the balance on line 1, and finds
it's OK. At line 2, Lucy checks the balance and finds it OK. At line 3, Fred makes
his withdrawal. At this point, the balance Lucy checked for (and believes is still
accurate) has actually changed since she last checked. And now Fred checks the
balance again, before Lucy even completes her first withdrawal. By this point, even
Fred is seeing a potentially inaccurate balance, because we know Lucy is going to
complete her withdrawal. It is possible, of course, that Fred will complete his before
Lucy does, but that's not what happens here.

On line 5, Lucy completes her withdrawal and then before Fred completes his,
Lucy does another check on the account on line 6. And so it continues until we
get to line 8, where Fred checks the balance and sees that it's 20. On line 9, Lucy
completes a withdrawal (that she had checked for earlier), and this takes the balance
to 10. On line 10, Lucy checks again, sees that the balance is 10, so she knows
she can do a withdrawal. But she didn't know that Fred, too, has already checked
the balance on line 8 so he thinks it's safe to do the withdrawal! On line 11, Fred
completes the withdrawal he approved on line 8. This takes the balance to zero. But
Lucy still has a pending withdrawal that she got approval for on line 10! You know
what's coming.

On lines 12 and 13, Fred checks the balance and finds that there's not enough
in the account. But on line 14, Lucy completes her withdrawal and BOOM! The
account is now overdrawn by 10—something we thought we were preventing by
doing a balance check prior to a withdrawal.

Figure 9-4 shows the timeline of what can happen when two threads concurrently
access the same object.

This problem is known as a "race condition," where multiple threads can access
the same resource (typically an object's instance variables), and can produce
corrupted data if one thread "races in" too quickly before an operation that should be
"atomic" has completed.

Preventing the Account Overdraw So what can be done? The solution
is actually quite simple. We must guarantee that the two steps of the withdrawal—
checking the balance and making the withdrawal—are never split apart. We need
them to always be performed as one operation, even when the thread falls asleep in
between step 1 and step 2! We call this an "atomic operation" (although the physics
is a little outdated, in this case "atomic" means "indivisible") because the operation,
regardless of the number of actual statements (or underlying byte code instructions),
is completed before any other thread code that acts on the same data.

You can't guarantee that a single thread will stay running throughout the entire
atomic operation. But you can guarantee that even if the thread running the atomic
operation moves in and out of the running state, no other running thread will be
able to act on the same data. In other words, If Lucy falls asleep after checking the
balance, we can stop Fred from checking the balance until after Lucy wakes up and
completes her withdrawal.

So how do you protect the data? You must do two things:

■ Mark the variables private.

■ Synchronize the code that modifies the variables.

 FIGURE 9-4

Problems with
concurrent access

Synchronizing Code (Exam Objective 4.3) 733

Object 1

Time

Thread A will access Object 2 only

Thread B will access Object 1, and then Object 2

A A AB B B

Object 2

734 Chapter 9: Threads

Remember, you protect the variables in the normal way—using an access control
modifier. It's the method code that you must protect, so that only one thread at a
time can be executing that code. You do this with the synchronized keyword.

We can solve all of Fred and Lucy's problems by adding one word to the code. We
mark the makeWithdrawal() method synchronized as follows:

private synchronized void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName() +
 " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName() +
 " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "

 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());

 }
}

Now we've guaranteed that once a thread (Lucy or Fred) starts the withdrawal
process (by invoking makeWithdrawal()), the other thread cannot enter that
method until the first one completes the process by exiting the method. The new
output shows the benefit of synchronizing the makeWithdrawal() method:

% java AccountDanger
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0

Notice that now both threads, Lucy and Fred, always check the account balance
and complete the withdrawal before the other thread can check the balance.

Synchronization and Locks
How does synchronization work? With locks. Every object in Java has a built-in lock
that only comes into play when the object has synchronized method code. When
we enter a synchronized non-static method, we automatically acquire the lock
associated with the current instance of the class whose code we're executing (the
this instance). Acquiring a lock for an object is also known as getting the lock,
or locking the object, locking on the object, or synchronizing on the object. We
may also use the term monitor to refer to the object whose lock we're acquiring.
Technically the lock and the monitor are two different things, but most people talk
about the two interchangeably, and we will too.

Since there is only one lock per object, if one thread has picked up the lock, no
other thread can pick up the lock until the first thread releases (or returns) the lock.
This means no other thread can enter the synchronized code (which means it can't
enter any synchronized method of that object) until the lock has been released.
Typically, releasing a lock means the thread holding the lock (in other words, the
thread currently in the synchronized method) exits the synchronized method.
At that point, the lock is free until some other thread enters a synchronized
method on that object. Remember the following key points about locking and
synchronization:

■ Only methods (or blocks) can be synchronized, not variables or classes.

■ Each object has just one lock.

■ Not all methods in a class need to be synchronized. A class can have both
synchronized and non-synchronized methods.

■ If two threads are about to execute a synchronized method in a class, and
both threads are using the same instance of the class to invoke the method,
only one thread at a time will be able to execute the method. The other
thread will need to wait until the first one finishes its method call. In other
words, once a thread acquires the lock on an object, no other thread can
enter any of the synchronized methods in that class (for that object).

Synchronization and Locks (Exam Objective 4.3) 735

736 Chapter 9: Threads

■ If a class has both synchronized and non-synchronized methods, multiple
threads can still access the class's non-synchronized methods! If you have
methods that don't access the data you're trying to protect, then you don't
need to synchronize them. Synchronization can cause a hit in some cases (or
even deadlock if used incorrectly), so you should be careful not to overuse it.

■ If a thread goes to sleep, it holds any locks it has—it doesn't release them.

■ A thread can acquire more than one lock. For example, a thread can enter a
synchronized method, thus acquiring a lock, and then immediately invoke
a synchronized method on a different object, thus acquiring that lock as
well. As the stack unwinds, locks are released again. Also, if a thread acquires
a lock and then attempts to call a synchronized method on that same
object, no problem. The JVM knows that this thread already has the lock for
this object, so the thread is free to call other synchronized methods on the
same object, using the lock the thread already has.

■ You can synchronize a block of code rather than a method.

Because synchronization does hurt concurrency, you don't want to synchronize
any more code than is necessary to protect your data. So if the scope of a method is
more than needed, you can reduce the scope of the synchronized part to something
less than a full method—to just a block. We call this, strangely, a synchronized block,
and it looks like this:

class SyncTest {
 public void doStuff() {
 System.out.println("not synchronized");
 synchronized(this) {
 System.out.println("synchronized");
 }
 }
}

When a thread is executing code from within a synchronized block, including
any method code invoked from that synchronized block, the code is said to be
executing in a synchronized context. The real question is, synchronized on what? Or,
synchronized on which object's lock?

When you synchronize a method, the object used to invoke the method is the
object whose lock must be acquired. But when you synchronize a block of code, you

specify which object's lock you want to use as the lock, so you could, for example,
use some third-party object as the lock for this piece of code. That gives you the
ability to have more than one lock for code synchronization within a single object.

Or you can synchronize on the current instance (this) as in the code above.
Since that's the same instance that synchronized methods lock on, it means that
you could always replace a synchronized method with a non-synchronized
method containing a synchronized block. In other words, this:

public synchronized void doStuff() {
 System.out.println("synchronized");
}

is equivalent to this:

public void doStuff() {
 synchronized(this) {
 System.out.println("synchronized");
 }
}

These methods both have the exact same effect, in practical terms. The compiled
bytecodes may not be exactly the same for the two methods, but they could be—and
any differences are not really important. The first form is shorter and more familiar
to most people, but the second can be more flexible.

So What About Static Methods? Can They Be Synchronized?
static methods can be synchronized. There is only one copy of the static data
you're trying to protect, so you only need one lock per class to synchronize static
methods—a lock for the whole class. There is such a lock; every class loaded in Java
has a corresponding instance of java.lang.Class representing that class. It's that
java.lang.Class instance whose lock is used to protect the static methods of
the class (if they're synchronized). There's nothing special you have to do to
synchronize a static method:

public static synchronized int getCount() {
 return count;
}

Synchronization and Locks (Exam Objective 4.3) 737

738 Chapter 9: Threads

Again, this could be replaced with code that uses a synchronized block. If the
method is defined in a class called MyClass, the equivalent code is as follows:

public static int getCount() {
 synchronized(MyClass.class) {
 return count;
 }
}

Wait—what's that MyClass.class thing? That's called a class literal. It's a
special feature in the Java language that tells the compiler (who tells the JVM): go
and find me the instance of Class that represents the class called MyClass. You can
also do this with the following code:

public static void classMethod() {
 Class cl = Class.forName("MyClass");
 synchronized (cl) {
 // do stuff
 }
}

However that's longer, ickier, and most important, not on the SCJP exam. But
it's quick and easy to use a class literal—just write the name of the class, and add
.class at the end. No quotation marks needed. Now you've got an expression for
the Class object you need to synchronize on.

EXERCISE 9-2

Synchronizing a Block of Code
In this exercise we will attempt to synchronize a block of code. Within that block of
code we will get the lock on an object, so that other threads cannot modify it while
the block of code is executing. We will be creating three threads that will all attempt
to manipulate the same object. Each thread will output a single letter 100 times, and
then increment that letter by one. The object we will be using is StringBuffer.

We could synchronize on a String object, but strings cannot be modified once
they are created, so we would not be able to increment the letter without generating
a new String object. The final output should have 100 As, 100 Bs, and 100 Cs all in
unbroken lines.

 1. Create a class and extend the Thread class.

 2. Override the run() method of Thread. This is where the synchronized
 block of code will go.

 3. For our three thread objects to share the same object, we will need to create
 a constructor that accepts a StringBuffer object in the argument.

 4. The synchronized block of code will obtain a lock on the StringBuffer
 object from step 3.

 5. Within the block, output the StringBuffer 100 times and then increment
 the letter in the StringBuffer. You can check Chapter 6 for StringBuffer
 methods that will help with this.

 6. Finally, in the main() method, create a single StringBuffer object using the
 letter A, then create three instances of our class and start all three of them.

What Happens If a Thread Can't Get the Lock?
If a thread tries to enter a synchronized method and the lock is already taken, the
thread is said to be blocked on the object's lock. Essentially, the thread goes into a
kind of pool for that particular object and has to sit there until the lock is released
and the thread can again become runnable/running. Just because a lock is released
doesn't mean any particular thread will get it. There might be three threads waiting
for a single lock, for example, and there's no guarantee that the thread that has
waited the longest will get the lock first.

When thinking about blocking, it's important to pay attention to which objects
are being used for locking.

■ Threads calling non-static synchronized methods in the same class will
only block each other if they're invoked using the same instance. That's
because they each lock on this instance, and if they're called using two dif-
ferent instances, they get two locks, which do not interfere with each other.

■ Threads calling static synchronized methods in the same class will always
block each other—they all lock on the same Class instance.

■ A static synchronized method and a non-static synchronized method
will not block each other, ever. The static method locks on a Class
instance while the non-static method locks on the this instance—these
actions do not interfere with each other at all.

Synchronization and Locks (Exam Objective 4.3) 739

740 Chapter 9: Threads

■ For synchronized blocks, you have to look at exactly what object has been
used for locking. (What's inside the parentheses after the word synchro-
nized?) Threads that synchronize on the same object will block each other.
Threads that synchronize on different objects will not.

Table 9-1 lists the thread-related methods and whether the thread gives up its
lock as a result of the call.

So When Do I Need to Synchronize?
Synchronization can get pretty complicated, and you may be wondering why you
would want to do this at all if you can help it. But remember the earlier "race
conditions" example with Lucy and Fred making withdrawals from their account.
When we use threads, we usually need to use some synchronization somewhere to
make sure our methods don't interrupt each other at the wrong time and mess up our
data. Generally, any time more than one thread is accessing mutable (changeable)
data, you synchronize to protect that data, to make sure two threads aren't changing
it at the same time (or that one isn't changing it at the same time the other is
reading it, which is also confusing). You don't need to worry about local variables—
each thread gets its own copy of a local variable. Two threads executing the same
method at the same time will use different copies of the local variables, and they
won't bother each other. However, you do need to worry about static and non-
static fields, if they contain data that can be changed.

For changeable data in a non-static field, you usually use a non-static method
to access it. By synchronizing that method, you will ensure that any threads trying

Give Up Locks Keep Locks
Class Defining
the Method

wait () notify() (Although the thread will probably
exit the synchronized code shortly after this call,
and thus give up its locks.)

java.lang.Object

 join() java.lang.Thread

 sleep() java.lang.Thread

yield() java.lang.Thread

 TABLE 9-1 Methods and Lock Status

to run that method using the same instance will be prevented from simultaneous
access. But a thread working with a different instance will not be affected, because
it's acquiring a lock on the other instance. That's what we want—threads working
with the same data need to go one at a time, but threads working with different data
can just ignore each other and run whenever they want to; it doesn't matter.

For changeable data in a static field, you usually use a static method to access it.
And again, by synchronizing the method you ensure that any two threads trying to
access the data will be prevented from simultaneous access, because both threads will
have to acquire locks on the Class object for the class the static method's defined
in. Again, that's what we want.

However—what if you have a non-static method that accesses a static field?
Or a static method that accesses a non-static field (using an instance)? In
these cases things start to get messy quickly, and there's a very good chance that
things will not work the way you want. If you've got a static method accessing a
non-static field, and you synchronize the method, you acquire a lock on the Class
object. But what if there's another method that also accesses the non-static field,
this time using a non-static method? It probably synchronizes on the current
instance (this) instead. Remember that a static synchronized method and a
non-static synchronized method will not block each other—they can run at
the same time. Similarly, if you access a static field using a non-static method,
two threads might invoke that method using two different this instances. Which
means they won't block each other, because they use different locks. Which means
two threads are simultaneously accessing the same static field—exactly the sort of
thing we're trying to prevent.

It gets very confusing trying to imagine all the weird things that can happen here.
To keep things simple: in order to make a class thread-safe, methods that access
changeable fields need to be synchronized.

Access to static fields should be done from static synchronized methods. Access
to non-static fields should be done from non-static synchronized methods. For
example:

public class Thing {
 private static int staticField;
 private int nonstaticField;
 public static synchronized int getStaticField() {
 return staticField;
 }
 public static synchronized void setStaticField(
 int staticField) {

Synchronization and Locks (Exam Objective 4.3) 741

742 Chapter 9: Threads

 Thing.staticField = staticField;
 }
 public synchronized int getNonstaticField() {
 return nonstaticField;
 }
 public synchronized void setNonstaticField(
 int nonstaticField) {
 this.nonstaticField = nonstaticField;
 }
}

What if you need to access both static and non-static fields in a method?
Well, there are ways to do that, but it's beyond what you need for the exam. You
will live a longer, happier life if you JUST DON'T DO IT. Really. Would we lie?

Thread-Safe Classes
When a class has been carefully synchronized to protect its data (using the rules
just given, or using more complicated alternatives), we say the class is "thread-safe."
Many classes in the Java APIs already use synchronization internally in order to
make the class "thread-safe." For example, StringBuffer and StringBuilder are nearly
identical classes, except that all the methods in StringBuffer are synchronized
when necessary, while those in StringBuilder are not. Generally, this makes
StringBuffer safe to use in a multithreaded environment, while StringBuilder is not.
(In return, StringBuilder is a little bit faster because it doesn't bother synchronizing.)
However, even when a class is "thread-safe," it is often dangerous to rely on these
classes to provide the thread protection you need. (C'mon, the repeated quotes
used around "thread-safe" had to be a clue, right?) You still need to think carefully
about how you use these classes, As an example, consider the following class.

import java.util.*;
public class NameList {
 private List names = Collections.synchronizedList(
 new LinkedList());
 public void add(String name) {
 names.add(name);
 }
 public String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;

 }
}

The method Collections.synchronizedList() returns a List whose methods
are all synchronized and "thread-safe" according to the documentation (like a
Vector—but since this is the 21st century, we're not going to use a Vector here).
The question is, can the NameList class be used safely from multiple threads? It's
tempting to think that yes, since the data in names is in a synchronized collection,
the NameList class is "safe" too. However that's not the case—the removeFirst()
may sometimes throw a NoSuchElementException. What's the problem? Doesn't it
correctly check the size() of names before removing anything, to make sure there's
something there? How could this code fail? Let's try to use NameList like this:

public static void main(String[] args) {
 final NameList nl = new NameList();
 nl.add("Ozymandias");
 class NameDropper extends Thread {
 public void run() {
 String name = nl.removeFirst();
 System.out.println(name);
 }
 }
 Thread t1 = new NameDropper();
 Thread t2 = new NameDropper();
 t1.start();
 t2.start();
}

What might happen here is that one of the threads will remove the one name
and print it, then the other will try to remove a name and get null. If we think just
about the calls to names.size() and names.get(0), they occur in this order:

Thread t1 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.size(), which returns 0.
Thread t2 does not call remove(0).

The output here is

Ozymandias

null

Synchronization and Locks (Exam Objective 4.3) 743

744 Chapter 9: Threads

However, if we run the program again something different might happen:

Thread t1 executes names.size(), which returns 1.
Thread t2 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.remove(0), which throws an exception because the

 list is now empty.

The thing to realize here is that in a "thread-safe" class like the one returned by
synchronizedList(), each individual method is synchronized. So names.size()
is synchronized, and names.remove(0) is synchronized. But nothing prevents
another thread from doing something else to the list in between those two calls. And
that's where problems can happen.

There's a solution here: don't rely on Collections.synchronizedList().
Instead, synchronize the code yourself:

import java.util.*;
public class NameList {
 private List names = new LinkedList();
 public synchronized void add(String name) {
 names.add(name);
 }
 public synchronized String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;
 }
}

Now the entire removeFirst() method is synchronized, and once one thread
starts it and calls names.size(), there's no way the other thread can cut in and
steal the last name. The other thread will just have to wait until the first thread
completes the removeFirst() method.

The moral here is that just because a class is described as "thread-safe" doesn't
mean it is always thread-safe. If individual methods are synchronized, that may not
be enough—you may be better off putting in synchronization at a higher level (i.e.,
put it in the block or method that calls the other methods). Once you do that, the
original synchronization (in this case, the synchronization inside the object returned
by Collections.synchronizedList()) may well become redundant.

Thread Deadlock
Perhaps the scariest thing that can happen to a Java program is deadlock. Deadlock
occurs when two threads are blocked, with each waiting for the other's lock. Neither
can run until the other gives up its lock, so they'll sit there forever.

This can happen, for example, when thread A hits synchronized code, acquires
a lock B, and then enters another method (still within the synchronized code it
has the lock on) that's also synchronized. But thread A can't get the lock to enter
this synchronized code—block C—because another thread D has the lock already.
So thread A goes off to the waiting-for-the-C-lock pool, hoping that thread D will
hurry up and release the lock (by completing the synchronized method). But
thread A will wait a very long time indeed, because while thread D picked up lock
C, it then entered a method synchronized on lock B. Obviously, thread D can't
get the lock B because thread A has it. And thread A won't release it until thread D
releases lock C. But thread D won't release lock C until after it can get lock B and
continue. And there they sit. The following example demonstrates deadlock:

 1. public class DeadlockRisk {
 2. private static class Resource {
 3. public int value;
 4. }
 5. private Resource resourceA = new Resource();
 6. private Resource resourceB = new Resource();
 7. public int read() {
 8. synchronized(resourceA) { // May deadlock here
 9. synchronized(resourceB) {
10. return resourceB.value + resourceA.value;
11. }
12. }
13. }
14.
15. public void write(int a, int b) {
16. synchronized(resourceB) { // May deadlock here
17. synchronized(resourceA) {
18. resourceA.value = a;
19. resourceB.value = b;
20. }
21. }
22. }
23. }

Thread Deadlock (Exam Objective 4.3) 745

746 Chapter 9: Threads

Assume that read() is started by one thread and write() is started by another.
If there are two different threads that may read and write independently, there is a
risk of deadlock at line 8 or 16. The reader thread will have resourceA, the writer
thread will have resourceB, and both will get stuck waiting for the other.

Code like this almost never results in deadlock because the CPU has to switch
from the reader thread to the writer thread at a particular point in the code, and the
chances of deadlock occurring are very small. The application may work fine 99.9
percent of the time.

The preceding simple example is easy to fix; just swap the order of locking for
either the reader or the writer at lines 16 and 17 (or lines 8 and 9). More complex
deadlock situations can take a long time to figure out.

Regardless of how little chance there is for your code to deadlock, the bottom
line is, if you deadlock, you're dead. There are design approaches that can help avoid
deadlock, including strategies for always acquiring locks in a predetermined order.

But that's for you to study and is beyond the scope of this book. We're just trying
to get you through the exam. If you learn everything in this chapter, though, you'll
still know more about threads than most experienced Java programmers.

CERTIFICATION OBJECTIVE

Thread Interaction (Objective 4.4)
4.4 Given a scenario, write code that makes appropriate use of wait, notify. or notifyAll.

The last thing we need to look at is how threads can interact with one another
to communicate about—among other things—their locking status. The Object
class has three methods, wait(), notify(), and notifyAll() that help threads
communicate about the status of an event that the threads care about. For example,
if one thread is a mail-delivery thread and one thread is a mail-processor thread,
the mail-processor thread has to keep checking to see if there's any mail to process.
Using the wait and notify mechanism, the mail-processor thread could check for
mail, and if it doesn't find any it can say, "Hey, I'm not going to waste my time
checking for mail every two seconds. I'm going to go hang out, and when the mail
deliverer puts something in the mailbox, have him notify me so I can go back to
runnable and do some work." In other words, using wait() and notify() lets one

thread put itself into a "waiting room" until some other thread notifies it that there's
a reason to come back out.

One key point to remember (and keep in mind for the exam) about wait/notify
is this:

 wait(), notify(), and notifyAll() must be called from within a synchronized
context! A thread can't invoke a wait or notify method on an object unless it owns
that object's lock.

Here we'll present an example of two threads that depend on each other to
proceed with their execution, and we'll show how to use wait() and notify() to
make them interact safely and at the proper moment.

Think of a computer-controlled machine that cuts pieces of fabric into different
shapes and an application that allows users to specify the shape to cut. The current
version of the application has one thread, which loops, first asking the user for
instructions, and then directs the hardware to cut the requested shape:

public void run(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Send steps to hardware
 }
}

This design is not optimal because the user can't do anything while the machine
is busy and while there are other shapes to define. We need to improve the situation.

A simple solution is to separate the processes into two different threads, one of
them interacting with the user and another managing the hardware. The user thread
sends the instructions to the hardware thread and then goes back to interacting with
the user immediately. The hardware thread receives the instructions from the user
thread and starts directing the machine immediately. Both threads use a common
object to communicate, which holds the current design being processed.

The following pseudocode shows this design:

public void userLoop(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Modify common object with new machine steps

Thread Interaction (Exam Objective 4.4) 747

748 Chapter 9: Threads

 }
}

public void hardwareLoop(){
 while(true){
 // Get steps from common object
 // Send steps to hardware
 }
}

The problem now is to get the hardware thread to process the machine steps as
soon as they are available. Also, the user thread should not modify them until they
have all been sent to the hardware. The solution is to use wait() and notify(),
and also to synchronize some of the code.

The methods wait() and notify(), remember, are instance methods of Object.
In the same way that every object has a lock, every object can have a list of threads
that are waiting for a signal (a notification) from the object. A thread gets on
this waiting list by executing the wait() method of the target object. From that
moment, it doesn't execute any further instructions until the notify() method of
the target object is called. If many threads are waiting on the same object, only one
will be chosen (in no guaranteed order) to proceed with its execution. If there are
no threads waiting, then no particular action is taken. Let's take a look at some real
code that shows one object waiting for another object to notify it (take note, it is
somewhat complex):

 1. class ThreadA {
 2. public static void main(String [] args) {
 3. ThreadB b = new ThreadB();
 4. b.start();
 5.
 6. synchronized(b) {
 7. try {
 8. System.out.println("Waiting for b to complete...");
 9. b.wait();
10. } catch (InterruptedException e) {}
11. System.out.println("Total is: " + b.total);
12. }
13. }
14. }
15.
16. class ThreadB extends Thread {
17. int total;

18.
19. public void run() {
20. synchronized(this) {
21. for(int i=0;i<100;i++) {
22. total += i;
23. }
24. notify();
25. }
26. }
27. }

This program contains two objects with threads: ThreadA contains the main
thread and ThreadB has a thread that calculates the sum of all numbers from 0
through 99. As soon as line 4 calls the start() method, ThreadA will continue
with the next line of code in its own class, which means it could get to line 11
before ThreadB has finished the calculation. To prevent this, we use the wait()
method in line 9.

Notice in line 6 the code synchronizes itself with the object b—this is because in
order to call wait() on the object, ThreadA must own a lock on b. For a thread to
call wait() or notify(), the thread has to be the owner of the lock for that object.
When the thread waits, it temporarily releases the lock for other threads to use, but
it will need it again to continue execution. It's common to find code like this:

synchronized(anotherObject) { // this has the lock on anotherObject
 try {
 anotherObject.wait();
 // the thread releases the lock and waits
 // To continue, the thread needs the lock,
 // so it may be blocked until it gets it.
 } catch(InterruptedException e){}
}

The preceding code waits until notify() is called on anotherObject.

synchronized(this) { notify(); }

This code notifies a single thread currently waiting on the this object. The
lock can be acquired much earlier in the code, such as in the calling method.
Note that if the thread calling wait() does not own the lock, it will throw an
IllegalMonitorStateException. This exception is not a checked exception,

Thread Interaction (Exam Objective 4.4) 749

750 Chapter 9: Threads

so you don't have to catch it explicitly. You should always be clear whether a thread
has the lock of an object in any given block of code.

Notice in lines 7–10 there is a try/catch block around the wait() method.
A waiting thread can be interrupted in the same way as a sleeping thread, so you
have to take care of the exception:

try {
 wait();
} catch(InterruptedException e) {
 // Do something about it

}

In the fabric example, the way to use these methods is to have the hardware
thread wait on the shape to be available and the user thread to notify after it has
written the steps. The machine steps may comprise global steps, such as moving the
required fabric to the cutting area, and a number of substeps, such as the direction
and length of a cut. As an example they could be

int fabricRoll;
int cuttingSpeed;
Point startingPoint;
float[] directions;
float[] lengths;
etc..

It is important that the user thread does not modify the machine steps while the
hardware thread is using them, so this reading and writing should be synchronized.

The resulting code would look like this:

class Operator extends Thread {
 public void run(){
 while(true){
 // Get shape from user
 synchronized(this){
 // Calculate new machine steps from shape
 notify();
 }
 }
 }
}
class Machine extends Thread {
 Operator operator; // assume this gets initialized

 public void run(){
 while(true){
 synchronized(operator){
 try {
 operator.wait();
 } catch(InterruptedException ie) {}
 // Send machine steps to hardware
 }
 }
 }

}

The machine thread, once started, will immediately go into the waiting state and
will wait patiently until the operator sends the first notification. At that point it is
the operator thread that owns the lock for the object, so the hardware thread gets
stuck for a while. It's only after the operator thread abandons the synchronized
block that the hardware thread can really start processing the machine steps.

While one shape is being processed by the hardware, the user may interact
with the system and specify another shape to be cut. When the user is finished
with the shape and it is time to cut it, the operator thread attempts to enter the
synchronized block, maybe blocking until the machine thread has finished with
the previous machine steps. When the machine thread has finished, it repeats the
loop, going again to the waiting state (and therefore releasing the lock). Only then
can the operator thread enter the synchronized block and overwrite the machine
steps with the new ones.

Having two threads is definitely an improvement over having one, although in
this implementation there is still a possibility of making the user wait. A further
improvement would be to have many shapes in a queue, thereby reducing the
possibility of requiring the user to wait for the hardware.

There is also a second form of wait() that accepts a number of milliseconds
as a maximum time to wait. If the thread is not interrupted, it will continue
normally whenever it is notified or the specified timeout has elapsed. This normal
continuation consists of getting out of the waiting state, but to continue execution it
will have to get the lock for the object:

 synchronized(a){ // The thread gets the lock on 'a'
 a.wait(2000); // Thread releases the lock and waits for notify
 // only for a maximum of two seconds, then goes back to Runnable
 // The thread reacquires the lock

 // More instructions here
 }

Thread Interaction (Exam Objective 4.4) 751

752 Chapter 9: Threads

Using notifyAll() When Many Threads May Be Waiting
In most scenarios, it's preferable to notify all of the threads that are waiting on a
particular object. If so, you can use notifyAll() on the object to let all the threads
rush out of the waiting area and back to runnable. This is especially important if you
have several threads waiting on one object, but for different reasons, and you want
to be sure that the right thread (along with all of the others) gets notified.

notifyAll(); // Will notify all waiting threads

All of the threads will be notified and start competing to get the lock. As the lock
is used and released by each thread, all of them will get into action without a need
for further notification.

As we said earlier, an object can have many threads waiting on it, and using
notify() will affect only one of them. Which one, exactly, is not specified and
depends on the JVM implementation, so you should never rely on a particular
thread being notified in preference to another.

In cases in which there might be a lot more waiting, the best way to do this is by
using notifyAll(). Let's take a look at this in some code. In this example, there is
one class that performs a calculation and many readers that are waiting to receive
the completed calculation. At any given moment many readers may be waiting.

 1. class Reader extends Thread {
 2. Calculator c;
 3.
 4. public Reader(Calculator calc) {
 5. c = calc;

When the wait() method is invoked on an object, the thread executing
that code gives up its lock on the object immediately. However, when notify() is called,
that doesn’t mean the thread gives up its lock at that moment. If the thread is still
completing synchronized code, the lock is not released until the thread moves out of
synchronized code. So just because notify() is called doesn’t mean the lock becomes
available at that moment.

 6. }
 7.
 8. public void run() {
 9. synchronized(c) {
10. try {
11. System.out.println("Waiting for calculation...");
12. c.wait();
13. } catch (InterruptedException e) {}
14. System.out.println("Total is: " + c.total);
15. }
16. }
17.
18. public static void main(String [] args) {
19. Calculator calculator = new Calculator();
20. new Reader(calculator).start();
21. new Reader(calculator).start();
22. new Reader(calculator).start();
23. calculator.start();
24. }
25. }
26.
27. class Calculator extends Thread {
28. int total;
29.
30. public void run() {
31. synchronized(this) {
32. for(int i=0;i<100;i++) {
33. total += i;
34. }
35. notifyAll();
36. }
37. }
38. }

The program starts three threads that are all waiting to receive the finished
calculation (lines 18–24), and then starts the calculator with its calculation. Note
that if the run() method at line 30 used notify() instead of notifyAll(), only
one reader would be notified instead of all the readers.

Using wait() in a Loop
Actually both of the previous examples (Machine/Operator and Reader/Calculator)
had a common problem. In each one, there was at least one thread calling wait(),
and another thread calling notify() or notifyAll(). This works well enough

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 4.4) 753

754 Chapter 9: Threads

as long as the waiting threads have actually started waiting before the other thread
executes the notify() or notifyAll(). But what happens if, for example, the
Calculator runs first and calls notify() before the Readers have started waiting?
This could happen, since we can't guarantee what order the different parts of the
thread will execute in. Unfortunately, when the Readers run, they just start waiting
right away. They don't do anything to see if the event they're waiting for has already
happened. So if the Calculator has already called notifyAll(), it's not going to
call notifyAll() again—and the waiting Readers will keep waiting forever. This
is probably not what the programmer wanted to happen. Almost always, when
you want to wait for something, you also need to be able to check if it has already
happened. Generally the best way to solve this is to put in some sort of loop that
checks on some sort of conditional expressions, and only waits if the thing you're
waiting for has not yet happened. Here's a modified, safer version of the earlier
fabric-cutting machine example:

class Operator extends Thread {
 Machine machine; // assume this gets initialized
 public void run() {
 while (true) {
 Shape shape = getShapeFromUser();
 MachineInstructions job =
 calculateNewInstructionsFor(shape);
 machine.addJob(job);
 }
 }
}

The operator will still keep on looping forever, getting more shapes from users,
calculating new instructions for those shapes, and sending them to the machine.
But now the logic for notify() has been moved into the addJob() method in the
Machine class:

class Machine extends Thread {
 List<MachineInstructions> jobs =
 new ArrayList<MachineInstructions>();

 public void addJob(MachineInstructions job) {
 synchronized (jobs) {
 jobs.add(job);
 jobs.notify();

 }
 }
 public void run() {
 while (true) {
 synchronized (jobs) {
 // wait until at least one job is available
 while (jobs.isEmpty()) {
 try {
 jobs.wait();
 } catch (InterruptedException ie) { }
 }
 // If we get here, we know that jobs is not empty
 MachineInstructions instructions = jobs.remove(0);
 // Send machine steps to hardware
 }
 }
 }
}

 A machine keeps a list of the jobs it's scheduled to do. Whenever an operator
adds a new job to the list, it calls the addJob() method and adds the new job to
the list. Meanwhile the run() method just keeps looping, looking for any jobs on
the list. If there are no jobs, it will start waiting. If it's notified, it will stop waiting
and then recheck the loop condition: is the list still empty? In practice this double-
check is probably not necessary, as the only time a notify() is ever sent is when a
new job has been added to the list. However, it's a good idea to require the thread to
recheck the isEmpty() condition whenever it's been woken up, because it's possible
that a thread has accidentally sent an extra notify() that was not intended.
There's also a possible situation called spontaneous wakeup that may exist in some
situations—a thread may wake up even though no code has called notify()
or notifyAll(). (At least, no code you know about has called these methods.
Sometimes the JVM may call notify() for reasons of its own, or code in some other
class calls it for reasons you just don't know.) What this means is, when your thread
wakes up from a wait(), you don't know for sure why it was awakened. By putting
the wait() method in a while loop and re-checking the condition that represents
what we were waiting for, we ensure that whatever the reason we woke up, we will
re-enter the wait() if (and only if) the thing we were waiting for has not happened
yet. In the Machine class, the thing we were waiting for is for the jobs list to not be
empty. If it's empty, we wait, and if it's not, we don't.

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 4.4) 755

756 Chapter 9: Threads

 Note also that both the run() method and the addJob() method synchronize
on the same object—the jobs list. This is for two reasons. One is because we're
calling wait() and notify() on this instance, so we need to synchronize in order
to avoid an IllegalThreadState exception. The other reason is, the data in the jobs
list is changeable data stored in a field that is accessed by two different threads. We
need to synchronize in order to access that changeable data safely. Fortunately, the
same synchronized blocks that allow us to wait() and notify() also provide
the required thread safety for our other access to changeable data. In fact this is a
main reason why synchronization is required to use wait() and notify() in the
first place—you almost always need to share some mutable data between threads
at the same time, and that means you need synchronization. Notice that the
synchronized block in addJob() is big enough to also include the call to
jobs.add(job)—which modifies shared data. And the synchronized block in
run() is large enough to include the whole while loop—which includes the call to
jobs.isEmpty(), which accesses shared data.

 The moral here is that when you use wait() and notify() or notifyAll(),
you should almost always also have a while loop around the wait() that checks a
condition and forces continued waiting until the condition is met. And you should
also make use of the required synchronization for the wait() and notify() calls,
to also protect whatever other data you're sharing between threads. If you see code
which fails to do this, there's usually something wrong with the code—even if you
have a hard time seeing what exactly the problem is.

The methods wait() , notify(), and notifyAll() are methods of only
java.lang.Object, not of java.lang.Thread or java.lang.Runnable. Be sure you know which
methods are defi ned in Thread, which in Object, and which in Runnable (just run(), so
that’s an easy one). Of the key methods in Thread, be sure you know which are static—
sleep() and yield(), and which are not static—join() and start(). Table 9-2 lists the
key methods you’ll need to know for the exam, with the static methods shown in italics.

CERTIFICATION SUMMARY
This chapter covered the required thread knowledge you'll need to apply on the
certification exam. Threads can be created by either extending the Thread class or
implementing the Runnable interface. The only method that must be overridden in
the Runnable interface is the run() method, but the thread doesn't become a thread
of execution until somebody calls the Thread object's start() method. We also
looked at how the sleep() method can be used to pause a thread, and we saw that
when an object goes to sleep, it holds onto any locks it acquired prior to sleeping.

We looked at five thread states: new, runnable, running, blocked/waiting/sleeping,
and dead. You learned that when a thread is dead, it can never be restarted even if
it's still a valid object on the heap. We saw that there is only one way a thread can
transition to running, and that's from runnable. However, once running, a thread
can become dead, go to sleep, wait for another thread to finish, block on an object's
lock, wait for a notification, or return to runnable.

You saw how two threads acting on the same data can cause serious problems
(remember Lucy and Fred's bank account?). We saw that, to let one thread execute
a method, but prevent other threads from running the same object's method, we use
the synchronized keyword. To coordinate activity between different threads, use
the wait(), notify(), and notifyAll() methods.

Class Object Class Thread Interface Runnable

wait () start() run()

notify() yield()

notifyAll() sleep()

join()

 TABLE 9-2 Key Thread Methods

Certifi cation Summary 757

758 Chapter 9: Threads

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
Photocopy it and sleep with it under your pillow for complete absorption.

Defining, Instantiating, and Starting Threads (Objective 4.1)
❑ Threads can be created by extending Thread and overriding the

public void run() method.
❑ Thread objects can also be created by calling the Thread constructor that

takes a Runnable argument. The Runnable object is said to be the target of
the thread.

❑ You can call start() on a Thread object only once. If start() is called
more than once on a Thread object, it will throw a RuntimeException.

❑ It is legal to create many Thread objects using the same Runnable object as
 the target.

❑ When a Thread object is created, it does not become a thread of execution
until its start() method is invoked. When a Thread object exists but hasn't
been started, it is in the new state and is not considered alive.

Transitioning Between Thread States (Objective 4.2)
❑ Once a new thread is started, it will always enter the runnable state.
❑ The thread scheduler can move a thread back and forth between the

runnable state and the running state.
❑ For a typical single-processor machine, only one thread can be running at a

time, although many threads may be in the runnable state.
❑ There is no guarantee that the order in which threads were started

determines the order in which they'll run.
❑ There's no guarantee that threads will take turns in any fair way. It's up

to the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns
regardless of the underlying JVM, you can use the sleep() method. This
prevents one thread from hogging the running process while another thread
starves. (In most cases, though, yield() works well enough to encourage
your threads to play together nicely.)

❑ A running thread may enter a blocked/waiting state by a wait(), sleep(),
or join() call.

✓

❑ A running thread may enter a blocked/waiting state because it can't acquire
the lock for a synchronized block of code.

❑ When the sleep or wait is over, or an object's lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting to
running (well, for all practical purposes anyway).

❑ A dead thread cannot be started again.

Sleep, Yield, and Join (Objective 4.2)
❑ Sleeping is used to delay execution for a period of time, and no locks are

released when a thread goes to sleep.
❑ A sleeping thread is guaranteed to sleep for at least the time specified in

the argument to the sleep() method (unless it's interrupted), but there is
no guarantee as to when the newly awakened thread will actually return to
running.

❑ The sleep() method is a static method that sleeps the currently executing
thread's state. One thread cannot tell another thread to sleep.

❑ The setPriority() method is used on Thread objects to give threads
a priority of between 1 (low) and 10 (high), although priorities are not
guaranteed, and not all JVMs recognize 10 distinct priority levels—some
levels may be treated as effectively equal.

❑ If not explicitly set, a thread's priority will have the same priority as the
priority of the thread that created it.

❑ The yield() method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out there
will be a different thread selected to run. A thread might yield and then
immediately reenter the running state.

❑ The closest thing to a guarantee is that at any given time, when a thread
is running it will usually not have a lower priority than any thread in the
runnable state. If a low-priority thread is running when a high-priority thread
enters runnable, the JVM will usually preempt the running low-priority
thread and put the high-priority thread in.

❑ When one thread calls the join() method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, "Hey thread, I want to join on to the end
of you. Let me know when you're done, so I can enter the runnable state."

Two-Minute Drill 759

760 Chapter 9: Threads

Concurrent Access Problems and Synchronized Threads
(Objective 4.3)

❑ synchronized methods prevent more than one thread from accessing an
object's critical method code simultaneously.

❑ You can use the synchronized keyword as a method modifier, or to start a
synchronized block of code.

❑ To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

❑ While only one thread can be accessing synchronized code of a particular
instance, multiple threads can still access the same object's unsynchronized code.

❑ When a thread goes to sleep, its locks will be unavailable to other threads.
❑ static methods can be synchronized, using the lock from the

java.lang.Class instance representing that class.

Communicating with Objects by Waiting and Notifying
(Objective 4.4)

❑ The wait() method lets a thread say, "there's nothing for me to do now, so
put me in your waiting pool and notify me when something happens that I
care about." Basically, a wait() call means "wait me in your pool," or "add
me to your waiting list."

❑ The notify() method is used to send a signal to one and only one of the
threads that are waiting in that same object's waiting pool.

❑ The notify() method can NOT specify which waiting thread to notify.
❑ The method notifyAll() works in the same way as notify(), only it sends

the signal to all of the threads waiting on the object.
❑ All three methods—wait(), notify(), and notifyAll()—must be

called from within a synchronized context! A thread invokes wait() or
notify() on a particular object, and the thread must currently hold the lock
on that object.

Deadlocked Threads (Objective 4.3)
❑ Deadlocking is when thread execution grinds to a halt because the code is

waiting for locks to be removed from objects.
❑ Deadlocking can occur when a locked object attempts to access another

locked object that is trying to access the first locked object. In other words,
both threads are waiting for each other's locks to be released; therefore, the
locks will never be released!

❑ Deadlocking is bad. Don't do it.

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. If you have a rough time with some of these at first, don't beat yourself up. Some of these
questions are long and intricate, expect long and intricate questions on the real exam too!

 1. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

 Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

 A. public class MyRunnable extends Runnable{public void run(){}}

 B. public class MyRunnable extends Object{public void run(){}}

 C. public class MyRunnable implements Runnable{public void run(){}}

 D. public class MyRunnable implements Runnable{void run(){}}

 E. public class MyRunnable implements Runnable{public void start(){}}

 2. Given:

 3. class MyThread extends Thread {
 4. public static void main(String [] args) {
 5. MyThread t = new MyThread();
 6. Thread x = new Thread(t);
 7. x.start();
 8. }
 9. public void run() {
10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. }
13. }
14. }

 What is the result of this code?
 A. Compilation fails
 B. 1..2..3..
 C. 0..1..2..3..
 D. 0..1..2..
 E. An exception occurs at runtime

Self Test 761

762 Chapter 9: Threads

 3. Given:

 3. class Test {
 4. public static void main(String [] args) {
 5. printAll(args);
 6. }
 7. public static void printAll(String[] lines) {
 8. for(int i=0;i<lines.length;i++){
 9. System.out.println(lines[i]);
10. Thread.currentThread().sleep(1000);
11. }
12. }
13. }

 The static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

 A. Each String in the array lines will output, with a 1-second pause between lines

 B. Each String in the array lines will output, with no pause in between because this method
is not executed in a Thread

 C. Each String in the array lines will output, and there is no guarantee there will be a pause
because currentThread() may not retrieve this thread

 D. This code will not compile

 E. Each String in the lines array will print, with at least a one-second pause between lines

 4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

 A. public int read(){return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

 B. public synchronized int read(){return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}

 C. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

 D. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

 E. public synchronized(this) int read(){return a+b;}
public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

 F. public int read(){synchronized(this){return a+b;}}
public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

 5. Given:

 1. public class WaitTest {
 2. public static void main(String [] args) {
 3. System.out.print("1 ");
 4. synchronized(args){
 5. System.out.print("2 ");
 6. try {
 7. args.wait();
 8. }
 9. catch(InterruptedException e){}
10. }
11. System.out.print("3 ");
12. }
13. }

 What is the result of trying to compile and run this program?

 A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt
with in line 7

 B. 1 2 3

 C. 1 3

 D. 1 2

 E. At runtime, it throws an IllegalMonitorStateException when trying to wait

 F. It will fail to compile because it has to be synchronized on the this object

 6. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

 After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

 A. After object B is notified, or after two seconds

 B. After the lock on B is released, or after two seconds

 C. Two seconds after object B is notified

 D. Two seconds after lock B is released

Self Test 763

764 Chapter 9: Threads

 7. Which are true? (Choose all that apply.)

 A. The notifyAll() method must be called from a synchronized context

 B. To call wait(), an object must own the lock on the thread

 C. The notify() method is defined in class java.lang.Thread

 D. When a thread is waiting as a result of wait(), it releases its lock

 E. The notify() method causes a thread to immediately release its lock

 F. The difference between notify() and notifyAll() is that notifyAll() notifies all
waiting threads, regardless of the object they're waiting on

 8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
 private StringBuilder contents = new StringBuilder();
 public void log(String message) {
 contents.append(System.currentTimeMillis());
 contents.append(": ");
 contents.append(Thread.currentThread().getName());
 contents.append(message);
 contents.append("\n");
 }
 public String getContents() { return contents.toString(); }
}

 How can we ensure that instances of this class can be safely used by multiple threads?

 A. This class is already thread-safe

 B. Replacing StringBuilder with StringBuffer will make this class thread-safe

 C. Synchronize the log() method only

 D. Synchronize the getContents() method only

 E. Synchronize both log() and getContents()

 F. This class cannot be made thread-safe

 9. Given:

public static synchronized void main(String[] args) throws
InterruptedException {
 Thread t = new Thread();
 t.start();
 System.out.print("X");
 t.wait(10000);
 System.out.print("Y");
}

 What is the result of this code?

 A. It prints X and exits

 B. It prints X and never exits

 C. It prints XY and exits almost immeditately

 D. It prints XY with a 10-second delay between X and Y

 E. It prints XY with a 10000-second delay between X and Y

 F. The code does not compile

 G. An exception is thrown at runtime

 10. Given:

class MyThread extends Thread {
 MyThread() {
 System.out.print(" MyThread");
 }
 public void run() {
 System.out.print(" bar");
 }
 public void run(String s) {
 System.out.print(" baz");
 }
}
public class TestThreads {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() {
 System.out.print(" foo");
 }
 };
 t.start();
} }

Self Test 765

766 Chapter 9: Threads

 What is the result?

 A. foo

 B. MyThread foo

 C. MyThread bar

 D. foo bar

 E. foo bar baz

 F. bar foo

 G. Compilation fails

 H. An exception is thrown at runtime

 11. Given:

public class ThreadDemo {
 synchronized void a() { actBusy(); }
 static synchronized void b() { actBusy(); }
 static void actBusy() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 final ThreadDemo x = new ThreadDemo();
 final ThreadDemo y = new ThreadDemo();
 Runnable runnable = new Runnable() {
 public void run() {
 int option = (int) (Math.random() * 4);
 switch (option) {
 case 0: x.a(); break;
 case 1: x.b(); break;
 case 2: y.a(); break;
 case 3: y.b(); break;
 }
 }
 };
 Thread thread1 = new Thread(runnable);
 Thread thread2 = new Thread(runnable);
 thread1.start();
 thread2.start();
 }
}

 Which of the following pairs of method invocations could NEVER be executing at the same time?
(Choose all that apply.)

 A. x.a() in thread1, and x.a() in thread2

 B. x.a() in thread1, and x.b() in thread2

 C. x.a() in thread1, and y.a() in thread2

 D. x.a() in thread1, and y.b() in thread2

 E. x.b() in thread1, and x.a() in thread2

 F. x.b() in thread1, and x.b() in thread2

 G. x.b() in thread1, and y.a() in thread2

 H. x.b() in thread1, and y.b() in thread2

 12. Given:

public class TwoThreads {
 static Thread laurel, hardy;
 public static void main(String[] args) {
 laurel = new Thread() {
 public void run() {
 System.out.println("A");
 try {
 hardy.sleep(1000);
 } catch (Exception e) {
 System.out.println("B");
 }
 System.out.println("C");
 }
 };
 hardy = new Thread() {
 public void run() {
 System.out.println("D");
 try {
 laurel.wait();
 } catch (Exception e) {
 System.out.println("E");
 }
 System.out.println("F");
 }
 };
 laurel.start();
 hardy.start();
 }
}

Self Test 767

768 Chapter 9: Threads

 Which letters will eventually appear somewhere in the output? (Choose all that apply.)

 A. A

 B. B

 C. C

 D. D

 E. E

 F. F

 G. The answer cannot be reliably determined

 H. The code does not compile

 13. Given:

 3. public class Starter implements Runnable {
 4. void go(long id) {
 5. System.out.println(id);
 6. }
 7. public static void main(String[] args) {
 8. System.out.print(Thread.currentThread().getId() + " ");
 9. // insert code here
10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

 And given the following five fragments:

I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();

 When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

 A. All five will compile

 B. Only one might produce the output 4 4

 C. Only one might produce the output 4 2

 D. Exactly two might produce the output 4 4

 E. Exactly two might produce the output 4 2

 F. Exactly three might produce the output 4 4

 G. Exactly three might produce the output 4 2

 14. Given:

 3. public class Leader implements Runnable {
 4. public static void main(String[] args) {
 5. Thread t = new Thread(new Leader());
 6. t.start();
 7. System.out.print("m1 ");
 8. t.join();
 9. System.out.print("m2 ");
10. }
11. public void run() {
12. System.out.print("r1 ");
13. System.out.print("r2 ");
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be r1 r2 m1 m2

 C. The output could be m1 m2 r1 r2

 D. The output could be m1 r1 r2 m2

 E. The output could be m1 r1 m2 r2

 F. An exception is thrown at runtime

 15. Given:

 3. class Dudes {
 4. static long flag = 0;
 5. // insert code here
 6. if(flag == 0) flag = id;
 7. for(int x = 1; x < 3; x++) {
 8. if(flag == id) System.out.print("yo ");
 9. else System.out.print("dude ");
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat().go();
17. }
18. void go() {
19. d = new Dudes();

Self Test 769

770 Chapter 9: Threads

20. new Thread(new DudesChat()).start();
21. new Thread(new DudesChat()).start();
22. }
23. public void run() {
24. d.chat(Thread.currentThread().getId());
25. }
26. }

 And given these two fragments:

I. synchronized void chat(long id) {
II. void chat(long id) {

 When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)

 A. An exception is thrown at runtime

 B. With fragment I, compilation fails

 C. With fragment II, compilation fails

 D. With fragment I, the output could be yo dude dude yo

 E. With fragment I, the output could be dude dude yo yo

 F. With fragment II, the output could be yo dude dude yo

 16. Given:

 3. class Chicks {
 4. synchronized void yack(long id) {
 5. for(int x = 1; x < 3; x++) {
 6. System.out.print(id + " ");
 7. Thread.yield();
 8. }
 9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack().go();
15. }
16. void go() {
17. c = new Chicks();
18. new Thread(new ChicksYack()).start();
19. new Thread(new ChicksYack()).start();
20. }
21. public void run() {

22. c.yack(Thread.currentThread().getId());
23. }
24. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be 4 4 2 3

 C. The output could be 4 4 2 2

 D. The output could be 4 4 4 2

 E. The output could be 2 2 4 4

 F. An exception is thrown at runtime

 17. Given:

 3. public class Chess implements Runnable {
 4. public void run() {
 5. move(Thread.currentThread().getId());
 6. }
 7. // insert code here
 8. System.out.print(id + " ");
 9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess();
13. new Thread(ch).start();
14. new Thread(new Chess()).start();
15. }
16. }

 And given these two fragments:

I. synchronized void move(long id) {
II. void move(long id) {

 When either fragment I or fragment II is inserted at line 7, which are true? (Choose all that apply.)

 A. Compilation fails

 B. With fragment I, an exception is thrown

 C. With fragment I, the output could be 4 2 4 2

 D. With fragment I, the output could be 4 4 2 3

 E. With fragment II, the output could be 2 4 2 4

Self Test 771

SELF TEST ANSWERS
 1. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

 Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

 A. public class MyRunnable extends Runnable{public void run(){}}

 B. public class MyRunnable extends Object{public void run(){}}

 C. public class MyRunnable implements Runnable{public void run(){}}

 D. public class MyRunnable implements Runnable{void run(){}}

 E. public class MyRunnable implements Runnable{public void start(){}}

Answer:

 ✓ C is correct. The class implements the Runnable interface with a legal run() method.

 A is incorrect because interfaces are implemented, not extended. B is incorrect because
even though the class has a valid public void run() method, it does not implement
the Runnable interface. D is incorrect because the run() method must be public. E is
incorrect because the method to implement is run(), not start(). (Objective 4.1)

 2. Given:

 3. class MyThread extends Thread {
 4. public static void main(String [] args) {
 5. MyThread t = new MyThread();
 6. Thread x = new Thread(t);
 7. x.start();
 8. }
 9. public void run() {
10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. } } }

772 Chapter 9: Threads

 What is the result of this code?

 A. Compilation fails

 B. 1..2..3..

 C. 0..1..2..3..

 D. 0..1..2..

 E. An exception occurs at runtime

Answer:
 ✓ D is correct. The thread MyThread will start and loop three times (from 0 to 2).

 A is incorrect because the Thread class implements the Runnable interface; therefore,
in line 5, Thread can take an object of type Thread as an argument in the constructor
(this is NOT recommended). B and C are incorrect because the variable i in the for
loop starts with a value of 0 and ends with a value of 2. E is incorrect based on the above.
(Objective 4.1)

 3. Given:

 3. class Test {
 4. public static void main(String [] args) {
 5. printAll(args);
 6. }
 7. public static void printAll(String[] lines) {
 8. for(int i=0;i<lines.length;i++){
 9. System.out.println(lines[i]);
10. Thread.currentThread().sleep(1000);
11. } } }

 The static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

 A. Each String in the array lines will print, with exactly a 1-second pause between lines
 B. Each String in the array lines will print, with no pause in between because this method is

not executed in a Thread
 C. Each String in the array lines will print, and there is no guarantee there will be a pause

because currentThread() may not retrieve this thread
 D. This code will not compile

 E. Each String in the lines array will print, with at least a one-second pause between lines

Self Test Answers 773

774 Chapter 9: Threads

Answer:

 ✓ D is correct. The sleep() method must be enclosed in a try/catch block, or the method
printAll() must declare it throws the InterruptedException.

 E is incorrect, but it would be correct if the InterruptedException was dealt with (A is
too precise). B is incorrect (even if the InterruptedException was dealt with) because
all Java code, including the main() method, runs in threads. C is incorrect. The sleep()
method is static, it always affects the currently executing thread. (Objective 4.2)

 4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

 A. public int read(){return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

 B. public synchronized int read(){return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}

 C. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

 D. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

 E. public synchronized(this) int read(){return a+b;}
public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

 F. public int read(){synchronized(this){return a+b;}}
public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

Answer:

 ✓ B and F are correct. By marking the methods as synchronized, the threads will get the
lock of the this object before proceeding. Only one thread will be setting or reading at any
given moment, thereby assuring that read() always returns the addition of a valid pair.

 A is incorrect because it is not synchronized; therefore, there is no guarantee that the values
added by the read() method belong to the same pair. C and D are incorrect; only objects
can be used to synchronize on. E fails —it is not possible to select other objects (even this)
to synchronize on when declaring a method as synchronized. (Objective 4.3)

 5. Given:

 1. public class WaitTest {
 2. public static void main(String [] args) {
 3. System.out.print("1 ");
 4. synchronized(args){

 5. System.out.print("2 ");
 6. try {
 7. args.wait();
 8. }
 9. catch(InterruptedException e){}
10. }
11. System.out.print("3 ");
12. } }

 What is the result of trying to compile and run this program?
 A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt

with in line 7
 B. 1 2 3

 C. 1 3

 D. 1 2

 E. At runtime, it throws an IllegalMonitorStateException when trying to wait

 F. It will fail to compile because it has to be synchronized on the this object

Answer:

 ✓ D is correct. 1 and 2 will be printed, but there will be no return from the wait call because
no other thread will notify the main thread, so 3 will never be printed. It's frozen at line 7.

 A is incorrect; IllegalMonitorStateException is an unchecked exception. B and C
are incorrect; 3 will never be printed, since this program will wait forever. E is incorrect
because IllegalMonitorStateException will never be thrown because the wait()
is done on args within a block of code synchronized on args. F is incorrect because any
object can be used to synchronize on and this and static don't mix. (Objective 4.4)

 6. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

 After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

 A. After object B is notified, or after two seconds
 B. After the lock on B is released, or after two seconds
 C. Two seconds after object B is notified

 D. Two seconds after lock B is released

Self Test Answers 775

776 Chapter 9: Threads

Answer:

 ✓ A is correct. Either of the two events will make the thread a candidate for running again.

 B is incorrect because a waiting thread will not return to runnable when the lock is
released, unless a notification occurs. C is incorrect because the thread will become a
candidate immediately after notification. D is also incorrect because a thread will not come
out of a waiting pool just because a lock has been released. (Objective 4.4)

 7. Which are true? (Choose all that apply.)

 A. The notifyAll() method must be called from a synchronized context

 B. To call wait(), an object must own the lock on the thread

 C. The notify() method is defined in class java.lang.Thread

 D. When a thread is waiting as a result of wait(), it releases its lock

 E. The notify() method causes a thread to immediately release its lock

 F. The difference between notify() and notifyAll() is that notifyAll() notifies all
waiting threads, regardless of the object they're waiting on

Answer:

 ✓ A is correct because notifyAll() (and wait() and notify()) must be called from within
a synchronized context. D is a correct statement.

 B is incorrect because to call wait(), the thread must own the lock on the object that
wait() is being invoked on, not the other way around. C is wrong because notify() is
defined in java.lang.Object. E is wrong because notify() will not cause a thread to
release its locks. The thread can only release its locks by exiting the synchronized code. F is
wrong because notifyAll() notifies all the threads waiting on a particular locked object,
not all threads waiting on any object. (Objective 4.4)

 8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
 private StringBuilder contents = new StringBuilder();
 public void log(String message) {
 contents.append(System.currentTimeMillis());
 contents.append(": ");
 contents.append(Thread.currentThread().getName());

 contents.append(message);
 contents.append("\n");
 }
 public String getContents() { return contents.toString(); }
}

 How can we ensure that instances of this class can be safely used by multiple threads?

 A. This class is already thread-safe

 B. Replacing StringBuilder with StringBuffer will make this class thread-safe

 C. Synchronize the log() method only

 D. Synchronize the getContents() method only

 E. Synchronize both log() and getContents()

 F. This class cannot be made thread-safe

Answer:
 ✓ E is correct. Synchronizing the public methods is sufficient to make this safe, so F is false.

This class is not thread-safe unless some sort of synchronization protects the changing data.
 B is not correct because although a StringBuffer is synchonized internally, we call

append() multiple times, and nothing would prevent two simultaneous log() calls from mix-
ing up their messages. C and D are not correct because if one method remains unsynchro-
nized, it can run while the other is executing, which could result in reading the contents
while one of the messages is incomplete, or worse. (You don't want to call getString() on
the StringBuffer as it's resizing its internal character array.) (Objective 4.3)

 9. Given:

public static synchronized void main(String[] args) throws
InterruptedException {
 Thread t = new Thread();
 t.start();
 System.out.print("X");
 t.wait(10000);
 System.out.print("Y");
}

 What is the result of this code?
 A. It prints X and exits
 B. It prints X and never exits
 C. It prints XY and exits almost immeditately

Self Test Answers 777

778 Chapter 9: Threads

 D. It prints XY with a 10-second delay between X and Y
 E. It prints XY with a 10000-second delay between X and Y
 F. The code does not compile
 G. An exception is thrown at runtime

Answer:
 ✓ G is correct. The code does not acquire a lock on t before calling t.wait(), so it throws an

IllegalMonitorStateException. The method is synchronized, but it's not synchronized
on t so the exception will be thrown. If the wait were placed inside a synchronized(t)
block, then the answer would have been D.

 A, B, C, D, E, and F are incorrect based the logic described above. (Objective 4.2)

 10. Given:

class MyThread extends Thread {
 MyThread() {
 System.out.print(" MyThread");
 }
 public void run() { System.out.print(" bar"); }
 public void run(String s) { System.out.print(" baz"); }
}
public class TestThreads {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() { System.out.print(" foo"); }
 };
 t.start();
} }

 What is the result?
 A. foo

 B. MyThread foo

 C. MyThread bar

 D. foo bar

 E. foo bar baz

 F. bar foo

 G. Compilation fails
 H. An exception is thrown at runtime

Answer:

 ✓ B is correct. The first line of main we're constructing an instance of an anonymous inner
class extending from MyThread. So the MyThread constructor runs and prints MyThread.
Next, main() invokes start() on the new thread instance, which causes the overridden
run() method (the run() method in the anonymous inner class) to be invoked.

 A, C, D, E, F, G, and H are incorrect based on the logic described above. (Objective 4.1)

 11. Given:

public class ThreadDemo {
 synchronized void a() { actBusy(); }
 static synchronized void b() { actBusy(); }
 static void actBusy() {
 try { Thread.sleep(1000); }
 catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 final ThreadDemo x = new ThreadDemo();
 final ThreadDemo y = new ThreadDemo();
 Runnable runnable = new Runnable() {
 public void run() {
 int option = (int) (Math.random() * 4);
 switch (option) {
 case 0: x.a(); break;
 case 1: x.b(); break;
 case 2: y.a(); break;
 case 3: y.b(); break;
 } }
 };
 Thread thread1 = new Thread(runnable);
 Thread thread2 = new Thread(runnable);
 thread1.start();
 thread2.start();
} }

 Which of the following pairs of method invocations could NEVER be executing at the same time?
(Choose all that apply.)

 A. x.a() in thread1, and x.a() in thread2

 B. x.a() in thread1, and x.b() in thread2

 C. x.a() in thread1, and y.a() in thread2

Self Test Answers 779

780 Chapter 9: Threads

 D. x.a() in thread1, and y.b() in thread2

 E. x.b() in thread1, and x.a() in thread2

 F. x.b() in thread1, and x.b() in thread2

 G. x.b() in thread1, and y.a() in thread2

 H. x.b() in thread1, and y.b() in thread2

Answer:
 ✓ A, F, and H. A is a right answer because when synchronized instance methods are called

 on the same instance, they block each other. F and H can't happen because synchronized
 static methods in the same class block each other, regardless of which instance was used
 to call the methods. (An instance is not required to call static methods; only the class.)

 C could happen because synchronized instance methods called on different instances
do not block each other. B, D, E, and G could all happen because instance methods and
static methods lock on different objects, and do not block each other. (Objective 4.3)

 12. Given:

public class TwoThreads {
 static Thread laurel, hardy;
 public static void main(String[] args) {
 laurel = new Thread() {
 public void run() {
 System.out.println("A");
 try {
 hardy.sleep(1000);
 } catch (Exception e) {
 System.out.println("B");
 }
 System.out.println("C");
 }
 };
 hardy = new Thread() {
 public void run() {
 System.out.println("D");
 try {
 laurel.wait();
 } catch (Exception e) {
 System.out.println("E");
 }
 System.out.println("F");

 }
 };
 laurel.start();
 hardy.start();
 }
}

 Which letters will eventually appear somewhere in the output? (Choose all that apply.)
 A. A
 B. B

 C. C

 D. D

 E. E

 F. F

 G. The answer cannot be reliably determined

 H. The code does not compile

Answer:
 ✓ A, C, D, E, and F are correct. This may look like laurel and hardy are battling to cause

the other to sleep() or wait()—but that's not the case. Since sleep() is a static
method, it affects the current thread, which is laurel (even though the method is invoked
using a reference to hardy). That's misleading but perfectly legal, and the Thread laurel
is able to sleep with no exception, printing A and C (after at least a 1-second delay). Mean-
while hardy tries to call laurel.wait()—but hardy has not synchronized on laurel,
so calling laurel.wait() immediately causes an IllegalMonitorStateException, and
so hardy prints D, E, and F. Although the order of the output is somewhat indeterminate
(we have no way of knowing whether A is printed before D, for example) it is guaranteed
that A, C, D, E, and F will all be printed in some order, eventually—so G is incorrect.

 B, G, and H are incorrect based on the above. (Objective 4.4)

 13. Given:

 3. public class Starter implements Runnable {
 4. void go(long id) {
 5. System.out.println(id);
 6. }
 7. public static void main(String[] args) {
 8. System.out.print(Thread.currentThread().getId() + " ");
 9. // insert code here

Self Test Answers 781

782 Chapter 9: Threads

10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

 And given the following five fragments:

I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();

 When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

 A. All five will compile

 B. Only one might produce the output 4 4

 C. Only one might produce the output 4 2

 D. Exactly two might produce the output 4 4

 E. Exactly two might produce the output 4 2

 F. Exactly three might produce the output 4 4

 G. Exactly three might produce the output 4 2

Answer:
 ✓ C and D are correct. Fragment I doesn't start a new thread. Fragment II doesn't compile.

Fragment III creates a new thread but doesn't start it. Fragment IV creates a new thread
and invokes run() directly, but it doesn’t start the new thread. Fragment V creates and
starts a new thread.

 A, B, E, F, and G are incorrect based on the above. (Objective 4.1)

 14. Given:

 3. public class Leader implements Runnable {
 4. public static void main(String[] args) {
 5. Thread t = new Thread(new Leader());
 6. t.start();
 7. System.out.print("m1 ");
 8. t.join();
 9. System.out.print("m2 ");
10. }

11. public void run() {
12. System.out.print("r1 ");
13. System.out.print("r2 ");
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be r1 r2 m1 m2

 C. The output could be m1 m2 r1 r2

 D. The output could be m1 r1 r2 m2

 E. The output could be m1 r1 m2 r2

 F. An exception is thrown at runtime

Answer:
 ✓ A is correct. The join() must be placed in a try/catch block. If it were, answers B and

D would be correct. The join() causes the main thread to pause and join the end of the
other thread, meaning "m2" must come last.

 B, C, D, E, and F are incorrect based on the above. (Objective 4.2)

 15. Given:

 3. class Dudes {
 4. static long flag = 0;
 5. // insert code here
 6. if(flag == 0) flag = id;
 7. for(int x = 1; x < 3; x++) {
 8. if(flag == id) System.out.print("yo ");
 9. else System.out.print("dude ");
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat().go();
17. }
18. void go() {
19. d = new Dudes();

Self Test Answers 783

784 Chapter 9: Threads

20. new Thread(new DudesChat()).start();
21. new Thread(new DudesChat()).start();
22. }
23. public void run() {
24. d.chat(Thread.currentThread().getId());
25. }
26. }

 And given these two fragments:

I. synchronized void chat(long id) {
II. void chat(long id) {

 When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)

 A. An exception is thrown at runtime

 B. With fragment I, compilation fails

 C. With fragment II, compilation fails

 D. With fragment I, the output could be yo dude dude yo

 E. With fragment I, the output could be dude dude yo yo

 F. With fragment II, the output could be yo dude dude yo

Answer:
 ✓ F is correct. With fragment I, the chat method is synchronized, so the two threads can't

swap back and forth. With either fragment, the first output must be yo.

 A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

 16. Given:

 3. class Chicks {
 4. synchronized void yack(long id) {
 5. for(int x = 1; x < 3; x++) {
 6. System.out.print(id + " ");
 7. Thread.yield();
 8. }
 9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack().go();
15. }

16. void go() {
17. c = new Chicks();
18. new Thread(new ChicksYack()).start();
19. new Thread(new ChicksYack()).start();
20. }
21. public void run() {
22. c.yack(Thread.currentThread().getId());
23. }
24. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be 4 4 2 3

 C. The output could be 4 4 2 2

 D. The output could be 4 4 4 2

 E. The output could be 2 2 4 4

 F. An exception is thrown at runtime

Answer:
 ✓ F is correct. When run() is invoked, it is with a new instance of ChicksYack and c has

not been assigned to an object. If c were static, then because yack is synchronized, answers
C and E would have been correct.

 A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

 17. Given:

 3. public class Chess implements Runnable {
 4. public void run() {
 5. move(Thread.currentThread().getId());
 6. }
 7. // insert code here
 8. System.out.print(id + " ");
 9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess();
13. new Thread(ch).start();
14. new Thread(new Chess()).start();
15. }
16. }

Self Test Answers 785

786 Chapter 9: Threads

 And given these two fragments:

I. synchronized void move(long id) {
II. void move(long id) {

 When either fragment I or fragment II is inserted at line 7, which are true? (Choose all that apply.)

 A. Compilation fails

 B. With fragment I, an exception is thrown

 C. With fragment I, the output could be 4 2 4 2

 D. With fragment I, the output could be 4 4 2 3

 E. With fragment II, the output could be 2 4 2 4

Answer:
 ✓ C and E are correct. E should be obvious. C is correct because even though move() is

synchronized, it's being invoked on two different objects.

 A, B, and D are incorrect based on the above. (Objective 4.3)

EXERCISE ANSWERS
Exercise 9-1: Creating a Thread and Putting It to Sleep

The final code should look something like this:

class TheCount extends Thread {
 public void run() {
 for(int i = 1;i<=100;++i) {
 System.out.print(i + " ");
 if(i % 10 == 0) System.out.println("Hahaha");
 try { Thread.sleep(1000); }
 catch(InterruptedException e) {}
 }
 }
 public static void main(String [] args) {
 new TheCount().start();
 }

}

Exercise 9-2: Synchronizing a Block of Code

Your code might look something like this when completed:

class InSync extends Thread {
 StringBuffer letter;
 public InSync(StringBuffer letter) { this.letter = letter; }
 public void run() {
 synchronized(letter) { // #1
 for(int i = 1;i<=100;++i) System.out.print(letter);
 System.out.println();
 char temp = letter.charAt(0);
 ++temp; // Increment the letter in StringBuffer:
 letter.setCharAt(0, temp);
 } // #2
 }
 public static void main(String [] args) {
 StringBuffer sb = new StringBuffer("A");
 new InSync(sb).start(); new InSync(sb).start();
 new InSync(sb).start();
 }
}

Just for fun, try removing lines 1 and 2 then run the program again. It will be
unsynchronized —watch what happens.

Exercise Answers 787

10
Development

CERTIFICATION OBJECTIVES

Use Packages and Imports

Determine Runtime Behavior
 for Classes and Command-Lines

Use Classes in JAR Files

Use Classpaths to
 Compile Code
✓ Two-Minute Drill

 Q&A Self Test

790 Chapter 10: Development

You want to keep your classes organized. You need to have powerful ways for your classes
to find each other. You want to make sure that when you're looking for a particular class
you get the one you want, and not another class that happens to have the same name. In

this chapter we'll explore some of the advanced capabilities of the java and javac commands. We'll
revisit the use of packages in Java, and how to search for classes that live in packages.

CERTIFICATION OBJECTIVES

Using the javac and java Commands
(Exam Objectives 7.1, 7.2, and 7.5)

7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

7.2 Given an example of a class and a command-line, determine the expected runtime
behavior.

7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and a
classpath, determine whether the classpath will allow the code to compile successfully.

So far in this book, we've probably talked about invoking the javac and java
commands about 1000 times; now we're going to take a closer look.

Compiling with javac
The javac command is used to invoke Java's compiler. In Chapter 5 we talked
about the assertion mechanism and when you might use the -source option when
compiling a file. There are many other options you can specify when running javac,
options to generate debugging information or compiler warnings for example. For
the exam, you'll need to understand the -classpath and -d options, which we'll
cover in the next few pages. Here's the structural overview for javac:

javac [options] [source files]

There are additional command-line options called @argfiles, but you won't
need to study them for the exam. Both the [options] and the [source files]
are optional parts of the command, and both allow multiple entries. The following
are both legal javac commands:

javac -help
javac -classpath com:. -g Foo.java Bar.java

The first invocation doesn't compile any files, but prints a summary of valid
options. The second invocation passes the compiler two options (-classpath,
which itself has an argument of com:. and -g), and passes the compiler two .java
files to compile (Foo.java and Bar.java). Whenever you specify multiple options
and/or files they should be separated by spaces.

Compiling with -d
By default, the compiler puts a .class file in the same directory as the .java source
file. This is fine for very small projects, but once you're working on a project of any
size at all, you'll want to keep your .java files separated from your .class files.
(This helps with version control, testing, deployment...) The -d option lets you tell
the compiler in which directory to put the .class file(s) it generates (d is for
destination). Let's say you have the following directory structure:

myProject
 |
 |--source
 | |
 | |-- MyClass.java
 |
 |-- classes
 |
 |--

The following command, issued from the myProject directory, will compile
MyClass.java and put the resulting MyClass.class file into the classes
directory. (Note: This assumes that MyClass does not have a package statement;
we'll talk about packages in a minute.)

cd myProject
javac -d classes source/MyClass.java

Compiling with javac (Exam Objective 7.2) 791

This command also demonstrates selecting a .java file from a subdirectory of the
directory from which the command was invoked. Now let's take a quick look at how
packages work in relationship to the -d option.

Suppose we have the following .java file in the following directory structure:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |-- (MyClass.class goes here)

If you were in the source directory, you would compile MyClass.java and put
the resulting MyClass.class file into the classes/com/wickedlysmart directory
by invoking the following command:

javac -d ../classes com/wickedlysmart/MyClass.java

This command could be read: "To set the destination directory, cd back to
the myProject directory then cd into the classes directory, which will be your
destination. Then compile the file named MyClass.java. Finally, put the resulting
MyClass.class file into the directory structure that matches its package, in this
case, classes/com/wickedlysmart." Because MyClass.java is in a package,
the compiler knew to put the resulting .class file into the
classes/com/wickedlysmart directory.

792 Chapter 10: Development

Somewhat amazingly, the javac command can sometimes help you out by
building directories it needs! Suppose we have the following:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |

And the following command (the same as last time):

javac -d ../classes com/wickedlysmart/MyClass.java

In this case, the compiler will build two directories called com and
com/wickedlysmart in order to put the resulting MyClass.class file into the
correct package directory (com/wickedlysmart/) which it builds within the
existing .../classes directory.

The last thing about -d that you'll need to know for the exam is that if the
destination directory you specify doesn't exist, you'll get a compiler error. If, in the
previous example, the classes directory did NOT exist, the compiler would say
something like:

java:5: error while writing MyClass: classes/MyClass.class (No
such file or directory)

Launching Applications with java
The java command is used to invoke the Java virtual machine. In Chapter 5 we
talked about the assertion mechanism and when you might use flags such as -ea or
-da when launching an application. There are many other options you can specify

Launching Applications with java (Exam Objective 7.2) 793

when running the java command, but for the exam, you'll need to understand
the -classpath (and its twin -cp) and -D options, which we'll cover in the next
few pages. In addition, it's important to understand the structure of this command.
Here's the overview:

java [options] class [args]

The [options] and [args] parts of the java command are optional, and they
can both have multiple values. You must specify exactly one class file to execute, and
the java command assumes you're talking about a .class file, so you don't specify
the .class extension on the command line. Here's an example:

java -DmyProp=myValue MyClass x 1

Sparing the details for later, this command can be read as "Create a system
property called myProp and set its value to myValue. Then launch the file named
MyClass.class and send it two String arguments whose values are x and 1."

Let's look at system properties and command-line arguments more closely.

Using System Properties
Java has a class called java.util.Properties that can be used to access a
system's persistent information such as the current versions of the operating system,
the Java compiler, and the Java virtual machine. In addition to providing such
default information, you can also add and retrieve your own properties. Take a look
at the following:

import java.util.*;
public class TestProps {
 public static void main(String[] args) {
 Properties p = System.getProperties();
 p.setProperty("myProp", "myValue");
 p.list(System.out);
 }
}

If this file is compiled and invoked as follows:

java -DcmdProp=cmdVal TestProps

You'll get something like this:

794 Chapter 10: Development

...
os.name=Mac OS X
myProp=myValue
...
java.specification.vendor=Sun Microsystems Inc.
user.language=en
java.version=1.6.0_05
...
cmdProp=cmdVal
...

where the . . . represent lots of other name=value pairs. (The name and value are
sometimes called the key and the property.) Two name=value properties were added
to the system's properties: myProp=myValue was added via the setProperty
method, and cmdProp=cmdVal was added via the -D option at the command line.
When using the -D option, if your value contains white space the entire value
should be placed in quotes like this:

java -DcmdProp="cmdVal take 2" TestProps

Just in case you missed it, when you use -D, the name=value pair must follow
immediately, no spaces allowed.

The getProperty() method is used to retrieve a single property. It can be
invoked with a single argument (a String that represents the name (or key)), or it
can be invoked with two arguments, (a String that represents the name (or key),
and a default String value to be used as the property if the property does not already
exist). In both cases, getProperty() returns the property as a String.

Handling Command-Line Arguments
Let's return to an example of launching an application and passing in arguments
from the command line. If we have the following code:

public class CmdArgs {
 public static void main(String[] args) {
 int x = 0;
 for(String s : args)
 System.out.println(x++ + " element = " + s);
 }
}

Launching Applications with java (Exam Objective 7.2) 795

796 Chapter 10: Development

compiled and then invoked as follows

java CmdArgs x 1

the output will be

0 element = x
1 element = 1

Like all arrays, args index is zero based. Arguments on the command line
directly follow the class name. The first argument is assigned to args[0], the second
argument is assigned to args[1], and so on.

Finally, there is some flexibility in the declaration of the main() method that
is used to start a Java application. The order of main()'s modifiers can be altered
a little, the String array doesn't have to be named args, and as of Java 5 it can be
declared using var-args syntax. The following are all legal declarations for main():

static public void main(String[] args)
public static void main(String... x)
static public void main(String bang_a_gong[])

Searching for Other Classes
In most cases, when we use the java and javac commands, we want these
commands to search for other classes that will be necessary to complete the
operation. The most obvious case is when classes we create use classes that Sun
provides with J2SE (now sometimes called Java SE), for instance when we use classes
in java.lang or java.util. The next common case is when we want to compile a
file or run a class that uses other classes that have been created outside of what Sun
provides, for instance our own previously created classes. Remember that for any
given class, the java virtual machine will need to find exactly the same supporting
classes that the javac compiler needed to find at compilation time. In other words,
if javac needed access to java.util.HashMap then the java command will need
to find java.util.HashMap as well.

Both java and javac use the same basic search algorithm:

1. They both have the same list of places (directories) they search, to look
for classes.

2. They both search through this list of directories in the same order.

3. As soon as they find the class they're looking for, they stop searching for that
class. In the case that their search lists contain two or more files with the
same name, the first file found will be the file that is used.

4. The first place they look is in the directories that contain the classes that
come standard with J2SE.

5. The second place they look is in the directories defined by classpaths.

6. Classpaths should be thought of as "class search paths." They are lists of
directories in which classes might be found.

7. There are two places where classpaths can be declared:

A classpath can be declared as an operating system environment variable.
The classpath declared here is used by default, whenever java or javac are
invoked.

A classpath can be declared as a command-line option for either java or
javac. Classpaths declared as command-line options override the classpath declared
as an environment variable, but they persist only for the length of the invocation.

Declaring and Using Classpaths
Classpaths consist of a variable number of directory locations, separated by
delimiters. For Unix-based operating systems, forward slashes are used to
construct directory locations, and the separator is the colon (:). For example:

-classpath /com/foo/acct:/com/foo

specifies two directories in which classes can be found: /com/foo/acct and
/com/foo. In both cases, these directories are absolutely tied to the root of the file
system, which is specified by the leading forward slash. It's important to remember
that when you specify a subdirectory, you're NOT specifying the directories above it.
For instance, in the preceding example the directory /com will NOT be searched.

Searching for Other Classes (Exam Objective 7.5) 797

798 Chapter 10: Development

A very common situation occurs in which java or javac complains that it can't
find a class file, and yet you can see that the file is IN the current directory! When
searching for class files, the java and javac commands don't search the current
directory by default. You must tell them to search there. The way to tell java or
javac to search in the current directory is to add a dot (.) to the classpath:

-classpath /com/foo/acct:/com/foo:.

This classpath is identical to the previous one EXCEPT that the dot (.) at the end
of the declaration instructs java or javac to also search for class files in the current
directory. (Remember, we're talking about class files—when you're telling javac
which .java file to compile, javac looks in the current directory by default.)

It's also important to remember that classpaths are searched from left to right.
Therefore in a situation where classes with duplicate names are located in several
different directories in the following classpaths, different results will occur:

-classpath /com:/foo:.

is not the same as

-classpath .:/foo:/com

Finally, the java command allows you to abbreviate -classpath with -cp. The
Java documentation is inconsistent about whether the javac command allows the
-cp abbreviation. On most machines it does, but there are no guarantees.

Most of the path-related questions on the exam will use Unix conventions.
If you are a Windows user, your directories will be declared using backslashes (\) and the
separator character you use will be a semicolon (;). But again, you will NOT need any
shell-specifi c knowledge for the exam.

Packages and Searching
When you start to put classes into packages, and then start to use classpaths to find
these classes, things can get tricky. The exam creators knew this, and they tried
to create an especially devilish set of package/classpath questions with which to
confound you. Let's start off by reviewing packages. In the following code:

package com.foo;
public class MyClass { public void hi() { } }

We're saying that MyClass is a member of the com.foo package. This means that
the fully qualified name of the class is now com.foo.MyClass. Once a class is in
a package, the package part of its fully qualified name is atomic—it can never be
divided. You can't split it up on the command line, and you can't split it up in an
import statement.

Now let's see how we can use com.foo.MyClass in another class:

package com.foo;
public class MyClass { public void hi() { } }

And in another file:

import com.foo.MyClass; // either import will work
import com.foo.*;

public class Another {
 void go() {
 MyClass m1 = new MyClass(); // alias name
 com.foo.MyClass m2 = new com.foo.MyClass(); // full name
 m1.hi();
 m2.hi();
 }
}

It's easy to get confused when you use import statements. The preceding code
is perfectly legal. The import statement is like an alias for the class's fully qualified
name. You define the fully qualified name for the class with an import statement (or
with a wildcard in an import statement of the package). Once you've defined the
fully qualified name, you can use the "alias" in your code—but the alias is referring
back to the fully qualified name.

Searching for Other Classes (Exam Objective 7.5) 799

800 Chapter 10: Development

Now that we've reviewed packages, let's take a look at how they work in
conjunction with classpaths and command lines. First we'll start off with the idea
that when you're searching for a class using its fully qualified name, that fully
qualified name relates closely to a specific directory structure. For instance, relative
to your current directory, the class whose source code is

package com.foo;
public class MyClass { public void hi() { } }

would have to be located here:

com/foo/MyClass.class

In order to find a class in a package, you have to have a directory in your classpath
that has the package's leftmost entry (the package's "root") as a subdirectory.

This is an important concept, so let's look at another example:

import com.wickedlysmart.Utils;
class TestClass {
 void doStuff() {
 Utils u = new Utils(); // simple name
 u.doX("arg1", "arg2");
 com.wickedlysmart.Date d =
 new com.wickedlysmart.Date(); // full name
 d.getMonth("Oct");
 }
}

In this case we're using two classes from the package com.wickedlysmart. For
the sake of discussion we imported the fully qualified name for the Utils class,
and we didn't for the Date class. The only difference is that because we listed
Utils in an import statement, we didn't have to type its fully qualified name
inside the class. In both cases the package is com.wickedlysmart. When it's time
to compile or run TestClass, the classpath will have to include a directory with
the following attributes:

■ A subdirectory named com (we'll call this the "package root" directory)

■ A subdirectory in com named wickedlysmart

■ Two files in wickedlysmart named Utils.class and Date.class

Finally, the directory that has all of these attributes has to be accessible (via a
classpath) in one of two ways:

 1. The path to the directory must be absolute, in other words, from the root
 (the file system root, not the package root).

 or

 2. The path to the directory has to be correct relative to the current directory.

Relative and Absolute Paths
A classpath is a collection of one or more paths. Each path in a classpath is either
an absolute path or a relative path. An absolute path in Unix begins with a forward
slash (/) (on Windows it would be something like c:\). The leading slash indicates
that this path is starting from the root directory of the system. Because it's starting
from the root, it doesn't matter what the current directory is—a directory's absolute
path is always the same. A relative path is one that does NOT start with a slash. Here's
an example of a full directory structure, and a classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp dirB:dirB/dirC

In this example, dirB and dirB/dirC are relative paths (they don't start with a
slash /). Both of these relative paths are meaningful only when the current directory
is dirA. Pop Quiz! If the current directory is dirA, and you're searching for class
files, and you use the classpath described above, which directories will be searched?

dirA? dirB? dirC?

Too easy? How about the same question if the current directory is the root (/)?
When the current directory is dirA, then dirB and dirC will be searched, but not

Searching for Other Classes (Exam Objective 7.5) 801

802 Chapter 10: Development

dirA (remember, we didn't specify the current directory by adding a dot (.) to the
classpath). When the current directory is root, since dirB is not a direct subdirectory
of root, no directories will be searched. Okay, how about if the current directory
is dirB? Again, no directories will be searched! This is because dirB doesn't have
a subdirectory named dirB. In other words, Java will look in dirB for a directory
named dirB (which it won't find), without realizing that it's already in dirB.

Let's use the same directory structure and a different classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp /dirB:/dirA/dirB/dirC

In this case, what directories will be searched if the current directory is dirA?
How about if the current directory is root? How about if the current directory is
dirB? In this case, both paths in the classpath are absolute. It doesn't matter what
the current directory is; since absolute paths are specified the search results will
always be the same. Specifically, only dirC will be searched, regardless of the current
directory. The first path (/dirB) is invalid since dirB is not a direct subdirectory of
root, so dirB will never be searched. And, one more time, for emphasis, since dot (.)
is not in the classpath, the current directory will only be searched if it happens to be
described elsewhere in the classpath (in this case, dirC).

CERTIFICATION OBJECTIVE

JAR Files (Objective 7.5)
7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and
a classpath, determine whether the classpath will allow the code to compile successfully.

JAR Files and Searching
Once you've built and tested your application, you might want to bundle it up so
that it's easy to distribute and easy for other people to install. One mechanism that
Java provides for these purposes is a JAR file. JAR stands for Java Archive. JAR files
are used to compress data (similar to ZIP files) and to archive data.

Here's an application with classes in different packages:

test
 |--UseStuff.java
 |--ws
 |--(create MyJar.jar here)
 |--myApp
 |--utils
 | |--Dates.class (package myApp.utils;)
 |--engine
 |--rete.class (package myApp.engine;)
 |--minmax.class " "

You can create a single JAR file that contains all of the files in myApp, and also
maintains myApp's directory structure. Once this JAR file is created, it can be moved
from place to place, and from machine to machine, and all of the classes in the JAR
file can be accessed, via classpaths, by java and javac, without ever unJARing the
JAR file. Although you won't need to know how to make JAR files for the exam,
let's make the current directory ws, and then make a JAR file called MyJar.jar:

cd ws
jar -cf MyJar.jar myApp

The jar command will create a JAR file called MyJar.jar and it will contain the
myApp directory and myApp's entire subdirectory tree and files. You can look at the
contents of the JAR file with the next command (this isn't on the exam either):

jar -tf MyJar.jar

(which produces something like)

META-INF/
META-INF/MANIFEST.MF
myApp/
myApp/.DS_Store
myApp/utils/

JAR Files and Searching (Exam Objective 7.5) 803

804 Chapter 10: Development

myApp/utils/Dates.class
myApp/engine/
myApp/engine/rete.class
myApp/engine/minmax.class

Back to exam stuff. Finding a JAR file using a classpath is similar to finding a
package file in a classpath. The difference is that when you specify a path for a JAR
file, you must include the name of the JAR file at the end of the path. Let's say you want
to compile UseStuff.java in the test directory, and UseStuff.java needs access
to a class contained in myApp.jar. To compile UseStuff.java say

cd test

javac -classpath ws/myApp.jar UseStuff.java

Compare the use of the JAR file to using a class in a package. If UseStuff.java
needed to use classes in the myApp.utils package, and the class was not in a JAR,
you would say

cd test

javac -classpath ws UseStuff.java

Remember when using a classpath, the last directory in the path must be the
super-directory of the root directory for the package. (In the preceding example,
myApp is the root directory of the package myApp.utils.) Notice that myApp can be
the root directory for more than one package (myApp.utils and myApp.engine),
and the java and javac commands can find what they need across multiple peer
packages like this. So, if ws is on the classpath and ws is the super-directory of myApp,
then classes in both the myApp.utils and myApp.engine packages will be found.

Here are some rules concerning the structure of JAR fi les:

■ The jar command creates the META-INF directory automatically.
■ The jar command creates the MANIFEST.MF fi le automatically.
■ The jar command won’t place any of your fi les in META-INF/.
■ As you can see above, the exact tree structure is represented.
■ java and javac will use the JAR like a normal directory tree.

Using .../jre/lib/ext with JAR files
When you install Java, you end up with a huge directory tree of Java-related
stuff, including the JAR files that contain the classes that come standard with
J2SE. As we discussed earlier, java and javac have a list of places that they
access when searching for class files. Buried deep inside of your Java directory
tree is a subdirectory tree named jre/lib/ext. If you put JAR files into the ext
subdirectory, java and javac can find them, and use the class files they contain.
You don't have to mention these subdirectories in a classpath statement—searching
this directory is a function that's built right into Java. Sun recommends, however,
that you use this feature only for your own internal testing and development, and
not for software that you intend to distribute.

When you use an import statement you are declaring only one package.
When you say import java.util.*; you are saying "Use the short name for all of the
classes in the java.util package." You’re NOT getting the java.util.jar classes or
java.util.regex packages! Those packages are totally independent of each other; the
only thing they share is the same "root" directory, but they are not the same packages.
As a corollary, you can’t say import java.*; in the hopes of importing multiple
packages—just remember, an import statement can import only a single package.

It’s possible to create environment variables that provide an alias for long
classpaths. The classpath for some of the JAR fi les in J2SE can be quite long, and so it’s
common for such an alias to be used when defi ning a classpath. If you see something like
JAVA_HOME or $JAVA_HOME in an exam question it just means "That part of the absolute
classpath up to the directories we’re specifying explicitly." You can assume that the
JAVA_HOME literal means this, and is pre-pended to the partial classpath you see.

JAR Files and Searching (Exam Objective 7.5) 805

806 Chapter 10: Development

CERTIFICATION OBJECTIVE

Using Static Imports (Exam Objective 7.1)
7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

Note: In Chapter 1 we covered most of what's defined in this objective, but we saved
static imports for this chapter.

Static Imports
We've been using import statements throughout the book. Ultimately, the only
value import statements have is that they save typing and they can make your code
easier to read. In Java 5, the import statement was enhanced to provide even greater
keystroke-reduction capabilities…although some would argue that this comes at the
expense of readability. This new feature is known as static imports. Static imports can
be used when you want to use a class's static members. (You can use this feature on
classes in the API and on your own classes.) Here's a "before and after" example:

Before static imports:

public class TestStatic {
 public static void main(String[] args) {
 System.out.println(Integer.MAX_VALUE);
 System.out.println(Integer.toHexString(42));
 }
}

After static imports:

import static java.lang.System.out; // 1
import static java.lang.Integer.*; // 2
public class TestStaticImport {
 public static void main(String[] args) {
 out.println(MAX_VALUE); // 3
 out.println(toHexString(42)); // 4
 }
}

Both classes produce the same output:

2147483647

2a

Let's look at what's happening in the code that's using the static import feature:

1. Even though the feature is commonly called "static import" the syntax MUST
be import static followed by the fully qualified name of the static member
you want to import, or a wildcard. In this case we're doing a static import on the
System class out object.

2. In this case we might want to use several of the static members of the
java.lang.Integer class. This static import statement uses the wildcard to say,
"I want to do static imports of ALL the static members in this class."

3. Now we're finally seeing the benefit of the static import feature! We didn't have to
type the System in System.out.println! Wow! Second, we didn't have to type
the Integer in Integer.MAX_VALUE. So in this line of code we were able to use
a shortcut for a static method AND a constant.

4. Finally, we do one more shortcut, this time for a method in the Integer class.

We've been a little sarcastic about this feature, but we're not the only ones. We're
not convinced that saving a few keystrokes is worth possibly making the code a little
harder to read, but enough developers requested it that it was added to the language.

Here are a couple of rules for using static imports:

■ You must say import static; you can't say static import.

■ Watch out for ambiguously named static members. For instance, if you do
a static import for both the Integer class and the Long class, referring to
MAX_VALUE will cause a compiler error, since both Integer and Long have
a MAX_VALUE constant, and Java won't know which MAX_VALUE you're refer-
ring to.

■ You can do a static import on static object references, constants (remember
they're static and final), and static methods.

Static Imports (Exam Objective 7.1) 807

808 Chapter 10: Development

CERTIFICATION SUMMARY
We started by exploring the javac command more deeply. The -d option allows you
to put class files generated by compilation into whatever directory you want to. The
-d option lets you specify the destination of newly created class files.

Next we talked about some of the options available through the java application
launcher. We discussed the ordering of the arguments java can take, including
[options] class [args]. We learned how to query and update system properties
in code and at the command line using the -D option.

The next topic was handling command-line arguments. The key concepts are that
these arguments are put into a String array, and that the first argument goes into
array element 0, the second argument into array element 1, and so on.

We turned to the important topic of how java and javac search for other
class files when they need them, and how they use the same algorithm to find
these classes. There are search locations predefined by Sun, and additional search
locations, called classpaths that are user defined. The syntax for Unix classpaths is
different than the syntax for Windows classpaths, and the exam will tend to use
Unix syntax.

The topic of packages came next. Remember that once you put a class into a
package, its name is atomic—in other words, it can't be split up. There is a tight
relationship between a class's fully qualified package name and the directory
structure in which the class resides.

JAR files were discussed next. JAR files are used to compress and archive data.
They can be used to archive entire directory tree structures into a single JAR file.
JAR files can be searched by java and javac.

We finished the chapter by discussing a new Java 5 feature, static imports. This is
a convenience-only feature that reduces keying long names for static members in
the classes you use in your programs.

TWO-MINUTE DRILL

Here are the key points from this chapter.

Using javac and java (Objective 7.2)

❑ Use -d to change the destination of a class file when it's first generated by the
javac command.

❑ The -d option can build package-dependent destination classes on-the-fly if
the root package directory already exists.

❑ Use the -D option in conjunction with the java command when you want to
set a system property.

❑ System properties consist of name=value pairs that must be appended directly
behind the -D, for example, java -Dmyproperty=myvalue.

❑ Command-line arguments are always treated as Strings.

❑ The java command-line argument 1 is put into array element 0, argument 2
is put into element 1, and so on.

Searching with java and javac (Objective 7.5)

❑ Both java and javac use the same algorithms to search for classes.

❑ Searching begins in the locations that contain the classes that come standard
with J2SE.

❑ Users can define secondary search locations using classpaths.

❑ Default classpaths can be defined by using OS environment variables.

❑ A classpath can be declared at the command line, and it overrides the default
classpath.

❑ A single classpath can define many different search locations.

❑ In Unix classpaths, forward slashes (/) are used to separate the directories
that make up a path. In Windows, backslashes (\) are used.

✓

Two-Minute Drill 809

810 Chapter 10: Development

❑ In Unix, colons (:) are used to separate the paths within a classpath. In Win-
dows, semicolons (;) are used.

❑ In a classpath, to specify the current directory as a search location, use a dot (.)

❑ In a classpath, once a class is found, searching stops, so the order of locations
to search is important.

Packages and Searching (Objective 7.5)

❑ When a class is put into a package, its fully qualified name must be used.

❑ An import statement provides an alias to a class's fully qualified name.

❑ In order for a class to be located, its fully qualified name must have a tight
relationship with the directory structure in which it resides.

❑ A classpath can contain both relative and absolute paths.

❑ An absolute path starts with a / or a \.

❑ Only the final directory in a given path will be searched.

JAR Files (Objective 7.5)

❑ An entire directory tree structure can be archived in a single JAR file.

❑ JAR files can be searched by java and javac.

❑ When you include a JAR file in a classpath, you must include not only the
directory in which the JAR file is located, but the name of the JAR file too.

❑ For testing purposes, you can put JAR files into .../jre/lib/ext, which is
somewhere inside the Java directory tree on your machine.

Static Imports (Objective 7.1)

❑ You must start a static import statement like this: import static

❑ You can use static imports to create shortcuts for static members (static
variables, constants, and methods) of any class.

SELF TEST
 1. Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)

 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. import static java.lang.Integer.*_VALUE;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

 2. Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

 And the command line:

java _ - A .

 What is the result?

 A. -A

 B. A.

 C. -A.

Self Test 811

812 Chapter 10: Development

 D. _A.

 E. _-A.

 F. Compilation fails

 G. An exception is thrown at runtime

 3. Given the default classpath:

/foo

 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

 And these two files:

package xcom;
public class A { }

package xcom;
public class B extends A { }

 Which allows B.java to compile? (Choose all that apply.)

 A. Set the current directory to xcom then invoke
 javac B.java

 B. Set the current directory to xcom then invoke
 javac -classpath . B.java

 C. Set the current directory to test then invoke
 javac -classpath . xcom/B.java

 D. Set the current directory to test then invoke
 javac -classpath xcom B.java

 E. Set the current directory to test then invoke
 javac -classpath xcom:. B.java

 4. Given two files:

a=b.java
c_d.class

 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

 A. java -Da=b c_d

 B. java -D a=b c_d

 C. javac -Da=b c_d

 D. javac -D a=b c_d

 5. If three versions of MyClass.class exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

 And the system's classpath includes

/foo/bar/baz

 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass

 Which version will be used by java?

 A. /foo/MyClass.class

 B. /foo/bar/MyClass.class

 C. /foo/bar/baz/MyClass.class

 D. /foo/bar/baz/bing/MyClass.class

 E. The result is not predictable

Self Test 813

814 Chapter 10: Development

 6. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. 5 6 5 6

 B. 5 6 followed by an exception
 C. Compilation fails with an error on line 6
 D. Compilation fails with an error on line 7
 E. Compilation fails with an error on line 8

 F. Compilation fails with an error on line 9

 7. Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();
 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

 A. javac Antique.java
java Antique

 B. javac Antique.java
java -ea Antique

 C. javac -source 6 Antique.java
java Antique

 D. javac -source 1.4 Antique.java
java Antique

 E. javac -source 1.6 Antique.java
java -ea Antique

 8. Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

 And given the command line invocation:

java -DcmdProp=cmdValue Values

 What is the result?

 A. null myValue null null

 B. cmdValue null null cmdValue

 C. cmdValue null null newValue

 D. cmdValue myValue null cmdValue

 E. cmdValue myValue null newValue

 F. An exception is thrown at runtime

Self Test 815

816 Chapter 10: Development

 9. Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

 If the current directory is x, which invocations will produce the output "test/Baz"?
(Choose all that apply.)

 A. java FindBaz

 B. java -classpath test FindBaz

 C. java -classpath .:test FindBaz

 D. java -classpath .:test/myApp FindBaz

 E. java -classpath test:test/myApp FindBaz

 F. java -classpath test:test/myApp:. FindBaz

 G. java -classpath test/myApp:test:. FindBaz

 10. Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

 then which path names will find a file in the .jar file? (Choose all that apply.)

 A. Foo.java

 B. Test.java

 C. myApp/Foo.java

 D. myApp/Bar.java

 E. META-INF/Foo.java

 F. META-INF/myApp/Foo.java

 G. myApp/myAppSub/Bar.java

 11. Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

Self Test 817

818 Chapter 10: Development

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar
located in test, which set(s) of commands will compile GetJar.java and produce the output 8?
(Choose all that apply.)

 A. javac -classpath MyJar.jar GetJar.java
java GetJar

 B. javac MyJar.jar GetJar.java
java GetJar

 C. javac -classpath MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 D. javac MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 12. Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

 And given the contents of GoDeep.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 And MyJar.jar contains the following entry:

myApp/Foo.class

 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

 A. java GoDeep

 B. java -classpath . GoDeep

 C. java -classpath test/MyJar.jar GoDeep

 D. java GoDeep -classpath test/MyJar.jar

 E. java GoDeep -classpath test/MyJar.jar:.

 F. java -classpath .:test/MyJar.jar GoDeep

 G. java -classpath test/MyJar.jar:. GoDeep

Self Test 819

SELF TEST ANSWERS
 1. Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)

 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. import static java.lang.Integer.*_VALUE;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

Answer:

 ✓ C and E are correct syntax for static imports. Line 4 isn't making use of static imports,
so the code will also compile with none of the imports.

 A, B, D, and F are incorrect based on the above. (Objective 7.1)

 2. Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

820 Chapter 10: Development

 And the command line:

java _ - A .

 What is the result?

 A. -A

 B. A.

 C. -A.

 D. _A.

 E. _-A.

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:
 ✓ B is correct. This question is using valid (but inappropriate and weird) identifiers, static

imports, var-args in main(), and pre-incrementing logic.
 A, C, D, E, F, and G are incorrect based on the above. (Objective 7.2)

 3. Given the default classpath:

/foo

 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

 And these two files:

package xcom;
public class A { }

package xcom;

public class B extends A { }

Self Test Answers 821

822 Chapter 10: Development

 Which allows B.java to compile? (Choose all that apply.)

 A. Set the current directory to xcom then invoke
 javac B.java

 B. Set the current directory to xcom then invoke
 javac -classpath . B.java

 C. Set the current directory to test then invoke
 javac -classpath . xcom/B.java

 D. Set the current directory to test then invoke
 javac -classpath xcom B.java

 E. Set the current directory to test then invoke
 javac -classpath xcom:. B.java

Answer:

 ✓ C is correct. In order for B.java to compile, the compiler first needs to be able to find
B.java. Once it's found B.java it needs to find A.class. Because A.class is in the
xcom package the compiler won't find A.class if it's invoked from the xcom directory.
Remember that the -classpath isn't looking for B.java, it's looking for whatever classes
B.java needs (in this case A.class).

 A, B, and D are incorrect based on the above. E is incorrect because the compiler can't
find B.java. (Objective 7.2)

 4. Given two files:

a=b.java
c_d.class

 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

 A. java -Da=b c_d

 B. java -D a=b c_d

 C. javac -Da=b c_d

 D. javac -D a=b c_d

Answer:
 ✓ A is correct. The -D flag is NOT a compiler flag, and the name=value pair that is

associated with the -D must follow the -D with no spaces.
 B, C, and D are incorrect based on the above. (Objective 7.2)

 5. If three versions of MyClass.class exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

 And the system's classpath includes

/foo/bar/baz

 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass

 Which version will be used by java?

 A. /foo/MyClass.class

 B. /foo/bar/MyClass.class

 C. /foo/bar/baz/MyClass.class

 D. /foo/bar/baz/bing/MyClass.class

 E. The result is not predictable.

Answer:
 D is correct. A -classpath included with a java invocation overrides a system classpath.

When java is using any classpath, it reads the classpath from left to right, and uses the
first match it finds.

 A, B, C, and E are incorrect based on the above. (Objective 7.5)

Self Test Answers 823

824 Chapter 10: Development

 6. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. 5 6 5 6

 B. 5 6 followed by an exception
 C. Compilation fails with an error on line 6
 D. Compilation fails with an error on line 7
 E. Compilation fails with an error on line 8

 F. Compilation fails with an error on line 9

Answer:
 ✓ C, D, and E are correct. Variable a (default access) cannot be accessed from outside the

package. Since variable b is protected, it can be accessed only through inheritance.

 A, B, and F are incorrect based on the above. (Objectives 1.1, 7.1)

 7. Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();

 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

 A. javac Antique.java
java Antique

 B. javac Antique.java
java -ea Antique

 C. javac -source 6 Antique.java
java Antique

 D. javac -source 1.4 Antique.java
java Antique

 E. javac -source 1.6 Antique.java
java -ea Antique

Answer:
 ✓ A and C are correct. If assertions (which were first available in Java 1.4) are enabled, an

AssertionError will be thrown at line 7.

 D is incorrect because the code uses generics, and generics weren't introduced until Java 5.
B and E are incorrect based on the above. (Objective 7.2)

 8. Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

Self Test Answers 825

826 Chapter 10: Development

 And given the command line invocation:

java -DcmdProp=cmdValue Values

 What is the result?

 A. null myValue null null

 B. cmdValue null null cmdValue

 C. cmdValue null null newValue

 D. cmdValue myValue null cmdValue

 E. cmdValue myValue null newValue

 F. An exception is thrown at runtime

Answer:
 ✓ E is correct. System properties can be set at the command line, as indicated correctly in

the example. System properties can also be set and overridden programmatically.

 A, B, C, D, and F are incorrect based on the above. (Objective 7.2)

 9. Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

 If the current directory is x, which invocations will produce the output "test/Baz"? (Choose
all that apply.)

 A. java FindBaz

 B. java -classpath test FindBaz

 C. java -classpath .:test FindBaz

 D. java -classpath .:test/myApp FindBaz

 E. java -classpath test:test/myApp FindBaz

 F. java -classpath test:test/myApp:. FindBaz

 G. java -classpath test/myApp:test:. FindBaz

Answer:
 ✓ C and F are correct. The java command must find both FindBaz and the version of

Baz located in the test directory. The "." finds FindBaz, and "test" must come before
"test/myApp" or java will find the other version of Baz. Remember the real exam will
default to using the Unix path separator.

 A, B, D, E, and G are incorrect based on the above. (Objective 7.2)

 10. Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

Self Test Answers 827

828 Chapter 10: Development

 then which path names will find a file in the .jar file? (Choose all that apply.)

 A. Foo.java

 B. Test.java

 C. myApp/Foo.java

 D. myApp/Bar.java

 E. META-INF/Foo.java

 F. META-INF/myApp/Foo.java

 G. myApp/myAppSub/Bar.java

Answer:
 ✓ C and G are correct. The files in a .jar file will exist within the same exact directory tree

structure in which they existed when the .jar was created. Although a .jar file will contain
a META-INF directory, none of your files will be in it. Finally, if any files exist in the
directory from which the jar command was invoked, they won’t be included in the
.jar file by default.

 A, B, D, E, and F are incorrect based on the above. (Objective 7.5)

 11. Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar
located in test, which set(s) of commands will compile GetJar.java and produce the output 8?
(Choose all that apply.)

 A. javac -classpath MyJar.jar GetJar.java
java GetJar

 B. javac MyJar.jar GetJar.java
java GetJar

 C. javac -classpath MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 D. javac MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

Answer:
 ✓ A is correct. Given the current directory and where the necessary files are located, these

are the correct command line statements.

 B and D are wrong because javac MyJar.jar GetJar.java is incorrect syntax. C is wrong
because the -classpath MyJar.java in the java invocation does not include the test directory.
(Objective 7.5)

 12. Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

 And given the contents of GoDeep.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

Self Test Answers 829

830 Chapter 10: Development

 And MyJar.jar contains the following entry:

myApp/Foo.class

 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

 A. java GoDeep

 B. java -classpath . GoDeep

 C. java -classpath test/MyJar.jar GoDeep

 D. java GoDeep -classpath test/MyJar.jar

 E. java GoDeep -classpath test/MyJar.jar:.

 F. java -classpath .:test/MyJar.jar GoDeep

 G. java -classpath test/MyJar.jar:. GoDeep

Answer:
 ✓ F and G are correct. The java command must find both GoDeep and Foo, and the

-classpath option must come before the class name. Note, the current directory
(.), in the classpath can be searched first or last.

 A, B, C, D, and E are incorrect based on the above. (Objective 7.5)

A
About the CD

832 Appendix A: About the CD

The CD-ROM included with this book comes complete with MasterExam and the
electronic version of the book. The software is easy to install on any Windows 98/
NT/2000/XP/Vista computer and must be installed to access the MasterExam feature.

You may, however, browse the electronic book directly from the CD without installation.
To register for a second bonus MasterExam, simply click the Bonus Material link on the Main Page
and follow the directions to the free online registration.

System Requirements
Software requires Windows 98 or higher and Internet Explorer 5.0 or above and
20 MB of hard disk space for full installation. The Electronic book requires Adobe
Acrobat Reader.

Installing and Running MasterExam
If your computer CD-ROM drive is configured to auto run, the CD will
automatically start up upon inserting the disk. From the opening screen you
may install MasterExam by pressing the MasterExam buttons. This will begin
the installation process and create a program group named “LearnKey.” To run
MasterExam, choose Start | Programs | LearnKey. If the auto run feature did not
launch your CD, browse to the CD and click RunInstall.

MasterExam
MasterExam provides you with a simulation of the actual exam. The number of
questions, types of questions, and the time allowed are intended to be an accurate
representation of the exam environment. You have the option to take an open-book
exam, including hints, references, and answers; a closed-book exam; or the timed
MasterExam simulation.

When you launch MasterExam, a digital clock display will appear in the upper-
left corner of your screen. The clock will continue to count down to zero unless
you choose to end the exam before the time expires. To register for a second bonus
MasterExam, simply click the Bonus Material link on the Main Page and follow the
directions to the free online registration.

Removing Installation(s) 833

Electronic Book
The entire contents of the Study Guide are provided in PDF format. Adobe’s
Acrobat Reader has been included on the CD.

Help
A help file is provided through the Help button on the main page in the lower-
left corner. Individual help features are also available through MasterExam and
LearnKey’s Online Training.

Removing Installation(s)
MasterExam is installed on your hard drive. For best results for removal of programs
use the Start | Programs | LearnKey | Uninstall options to remove MasterExam.

If you want to remove the Real Player, use the Add/Remove Programs icon from
your Control Panel. You may also remove the LearnKey training program from this
location.

Technical Support
For questions regarding the technical content of the electronic book, or MasterExam,
please visit www.osborne.com or e-mail customer.service@mcgraw-hill.com. For
customers outside the 50 United States, e-mail international_cs@mcgraw-hill.com.

LearnKey Technical Support
For technical problems with the software (installation, operation, removing
installations), and for questions regarding any LearnKey Online Training content,
please visit www.learnkey.com or e-mail techsupport@learnkey.com.

-- (decrement) operator, 302–303
- (subtraction) operator, 306
! (boolean invert) logical operator,

309–310
!= (not equal to) operator, 292
% (remainder) operator, 299
& (non-short-circuit AND) operator,

288, 308
&& (short-circuit AND) operator,

306, 308, 548
* (multiplication) operator, 308
* quantifier, 495
. (dot) metacharacter, 497
. (dot operator), 25, 27
.java files, 791–792
/ (division) operator, 306
: (colons), 354
; (semicolons), 17, 41, 344–345, 675
? quantifier, 495
@argfiles command-line options, 791
\ (backslashes), 798
^ (exclusive-OR [XOR]) logical

operator, 288, 309–310, 553
^ (regex carat) operator, 494
{} (curly braces), 329, 332
| (non-short-circuit OR) operator,

288, 308
|| (short-circuit OR) operator,

306, 308
+ (addition) operator, 288, 299, 307
+ quantifier, 495
++ (increment) operator, 302–303
+= (compound additive operator), 301
<? extends Animal> syntax, 618
<? super ...> syntax, 619
<> (angle brackets), 600
<?> wildcard, 620
<E> placeholder, 622
<Integer> type, 602
<JButton> type, 608
<Object> type, 600

<X> type declaration, 629
= (assignment) operators

assigning one primitive variable
to another, 198

compound, 197, 289–290
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191, 288–289
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

== (equals) operator, 245–246,
292–294, 544

A

absolute paths, 801–802
abstract classes, 16–19, 20
abstract keyword, 15
abstract methods, 41–45
access control

class access, 13
default access, 13–14, 32–34,

36–38
defined, 12
local variables, 38–39
modifiers, 24–26
private members, 29–32
protected members, 32–36
public access, 14–15, 26–29

access modifiers
declaring class members

default, 32–34, 36–38
local variables and, 38–39
overview, 24–26
private, 29–32
protected, 32–36
public, 26–29

defined, 12
method-local inner class, 682

add() method, 581, 620
addAll() method, 601, 603
addAnimals() method, 616–617
addition (+) operator, 288, 299, 307
addJob() method, 754–755
AND operators

& non-short-circuit, 288, 308
&& short-circuit, 306, 308, 548

angle brackets (<>), 600
animate() method, 102
anonymous arrays, 228–230
anonymous inner classes

argument-defined, 678–680
overview, 673–678

anotherObject object, 749
append() method, 440
applications, launching with java

command, 793–796
appropriate use of assertions, 392–394
arg_index format string element, 507
args index, 796
arguments. See also var-args

anonymous inner classes defined
by, 678–680

command-line, 393, 795–796
constructor, 238, 628
defined, 46
final, 41
just-in-time array, 229–230
using assertions to validate,

392–393
arithmetic operators

decrement, 302–303
increment, 302–303
overview, 298
remainder, 299
string concatenation, 299–301

ArrayIndexOutOfBoundsException
subclass, 224, 368, 382

INDEX

836 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

ArrayList class
basics, 567–568
Collection Interface Concrete

Implementation, 565
List interface implementation, 562
mixing generic and non-generic

collections, 601–607
of Strings, 596

arrays
constructing

anonymous, 228–230
multidimensional, 223
on one line, 226–228
one-dimensional, 221–222
overview, 220–221

declarations, 55–57, 219–220,
226–228

enhanced for loop for, 350–352
initialization blocks, 234–237
initializing

and constructing anonymous,
228–230

declaring, and constructing on
one line, 226–228

elements in loop, 225–226
legal element assignments, 230
multidimensional, 233–234
of object references, 231–232
one-dimensional, 232–233
overview, 224–225
primitive, 230–231
reference assignments for one-

dimensional, 232–234
instance variables, 206
length attribute, 437
as objects, 297
primitive, 230–231
returning values, 128
shortcut syntax, 226–228
use of brackets, 56

Arrays class
asList () method, 579
collections, 576
converting to Lists, 579
key methods, 593
searching, 576–578
sort() method, 576

asList () method, 579
assert statements, 386–389, 394

AssertionError subtype, 375, 381–382,
385, 393

assertions
appropriate use of, 392–394
disabling

at runtime, 390
selective, 390–391

enabling
compiling assertion-aware

code, 388–389
identifiers versus keywords,

387–388
at runtime, 389
selective, 390–391

expression rules, 385–387
overview, 328, 383–385

assignment (=) operators
assigning one primitive variable

to another, 198
compound, 197, 289–290
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191, 288–289
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

assignments. See also arrays; garbage
collection; wrappers

assignment operators
assigning one primitive

variable to another, 198
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

autoboxing
equals() method, 245–246
equals operator, 245–246
overview, 244–245
use of, 246–247

heap, 184–185
literal values for primitive types

boolean, 189

character, 189–190
floating-point, 188–189
integer, 186–188
overview, 186
string, 190

local variables
array references, 210
assigning one reference

variable to another, 210–213
object references, 209–210
overview, 207
primitives, 207–209

overloading
with boxing and var-args,

249–250
in combination with var-args,

253–254
overview, 247–249
when combining widening

and boxing, 251–253
widening reference variables,

250–251
passing variables into methods

object reference variables,
213–214

overview, 213
pass-by-value semantics,

214–215
primitive variables, 215–218

stack, 184–185
uninitialized variables

array, 206
object reference, 203–206
overview, 203
primitive, 203–204

atomic operations, 733–735
autoboxing

with collections, 568
equals() method, 245–246
equals operator, 245–246
overloading

with var-args and, 249–250
when combining widening

and, 252–253
overview, 244–245
in switch statements, 337
use of, 246–247

automatic variables, 207. See also
local variables

Index 837

B

backed collections
key methods, 593–595
overview, 589–591
using PriorityQueue class, 591–592

backslashes (\), 798
bar() method, 215
Bar object, 199, 679
behavior, 2. See also methods
binarySearch() method, 576
bitwise operators, 305
block variables, 201
blocked threads, 719–720
boolean add(element) interface

method, 594
boolean containsKey(object key)

interface method, 594
boolean contains(object) interface

method, 594
boolean containsValue(object value)

interface method, 594
boolean createNewFile() method, 446
boolean equals (Object obj) method, 543
boolean exists() method, 446
boolean hasNext() method, 580
boolean invert (!) logical operator,

309–310
Boolean wrapper, 239
booleans

arguments in backed collections,
590–591

assigning versus testing, 334
literals, 189
for loops, 346–347
and relational operators, 290–291

boxing
equals() method, 245–246
equals operator, 245–246
overloading

with var-args and, 249–250
when combining widening

and, 252–253
overview, 244–245
in switch statements, 337
use of, 246–247

brackets, array, 56
branching, if-else, 329–332
break statements

labeled, 354–356
in switch blocks, 338–340

switch statements, 335
unlabeled, 353–354
use of, 352–353

BufferedReader class, 443
BufferedWriter class, 444
byte variables, 192

C

Calculator class, 754
Calendar class, 477–479
call stack

constructors on, 133
overloaded constructors on, 141
propagating uncaught exceptions,

362–363
unwinding, 367

camelCase format, 7–8
can’t-be-overridden restriction, 40
carat (^) operator, 494
case constants

default, 341–342
evaluation of, 338
legal expressions for, 335–338

casting
primitive, 193–195
reference variables, 116–119

catch clauses, 357–359, 362
catch keyword, 357–359
ceiling() method, 587
ceilingKey() method, 587
chained methods, 442
chaining

combining I/O classes, 449–452
constructors, 132–133

changeNum() method, 470
changeSize() method, 110
character literals, 189–190
characters, Unicode, 51, 189, 426–427
charAt() method, 435
ChatClient class, 663–664
checked exceptions, 373–375
checkup() method, 608
class files, 791–794, 805
class literals, 738
ClassCastException class, 382, 547
classes. See also dates; exceptions;

individual classes by name; inner
classes; member declarations

cohesion, 3, 151–154
collections, 557–561

combining, 449–452
declaration

abstract classes, 16–19
class access, 13
default access, 13–14
final classes, 15–16
modifiers, 12–13, 15
overview, 10–11
public access, 13–15
source file rules, 11–12

defined, 2
File, 443, 445–447
finding other, 3–4
generic, 623–627
interfaces

implementing, 122
relationship with, 20

naming standards, 7
searching for

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
thread-safe, 742–744
wrapper, 237–238

classes directory, 791–793
-classpath option, javac command,

790–791, 794, 798
classpaths, 797–798, 808
close() method, 448–449
cmdProp=cmdVal property, 795
cohesion, 3, 151–154
Collection classes, 56
Collection interface, 557–559
collections. See also generics;

hashCode() method
ArrayList basics, 567–568
autoboxing with, 568
backed

key methods, 593–595
overview, 589–591
using PriorityQueue class,

591–592
classes, 557–561
converting arrays to Lists to

arrays, 579
interfaces

List, 561–562
Map, 563–564
overview, 557–561

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Contributors:
	Acknowledgments:
	Preface:
	Introduction:
	1 Declarations and Access Control:
	Java Refresher:
	Legal Identifiers:
	Sun's Java Code Conventions:
	JavaBeans Standards:
	Source File Declaration Rules:
	Class Declarations and Modifiers:
	Exercise 1-1: Creating an Abstract Superclass and Concrete Subclass:
	Declaring an Interface:
	Declaring Interface Constants:
	Access Modifiers:
	Nonaccess Member Modifiers:
	Constructor Declarations:
	Variable Declarations:
	Declaring Enums:
	2 Object Orientation:
	IS-A:
	HAS-A:
	Overridden Methods:
	Overloaded Methods:
	Return Type Declarations:
	Returning a Value:
	Determine Whether a Default Constructor Will Be Created:
	Overloaded Constructors:
	Static Variables and Methods:
	Q&A: Self Test:
	Self Test Answers:
	3 Assignments:
	Stack and Heap–Quick Review:
	Literal Values for All Primitive Types:
	Exercise 3-1: Casting Primitives:
	Using a Variable or Array Element That Is Uninitialized and Unassigned:
	Local (Stack, Automatic) Primitives and Objects:
	Passing Object Reference Variables:
	Does Java Use Pass-By-Value Semantics?:
	Passing Primitive Variables:
	Declaring an Array:
	Constructing an Array:
	Initializing an Array:
	Initialization Blocks:
	An Overview of the Wrapper Classes:
	Creating Wrapper Objects:
	Using Wrapper Conversion Utilities:
	Autoboxing:
	Overview of Memory Management and Garbage Collection:
	Overview of Java's Garbage Collector:
	Writing Code That Explicitly Makes Objects Eligible for Collection:
	Exercise 3-2: Garbage Collection Experiment:
	4 Operators:
	Relational Operators:
	instanceof Comparison:
	Arithmetic Operators:
	Conditional Operator:
	Logical Operators:
	Generics and Legacy Code:
	Mixing Generic and Non-generic Collections:
	Polymorphism and Generics:
	Generic Methods:
	Generic Declarations:
	8 Inner Classes:
	Inner Classes:
	Coding a "Regular" Inner Class:
	Referencing the Inner or Outer Instance from Within the Inner Class:
	Method-Local Inner Classes:
	What a Method-Local Inner Object Can and Can't Do:
	Anonymous Inner Classes:
	Plain-Old Anonymous Inner Classes, Flavor One:
	Plain-Old Anonymous Inner Classes, Flavor Two:
	Argument-Defined Anonymous Inner Classes:
	Static Nested Classes:
	Instantiating and Using Static Nested Classes:
	9 Threads:
	Defining a Thread:
	Instantiating a Thread:
	Starting a Thread:
	Thread States:
	Preventing Thread Execution:
	Sleeping:
	Exercise 9-1: Creating a Thread and Putting It to Sleep:
	Thread Priorities and yield():
	Synchronization and Locks:
	Exercise 9-2: Synchronizing a Block of Code:
	Thread Deadlock:
	Using notifyAll() When Many Threads May Be Waiting:
	Exercise Answers:
	10 Development:
	Compiling with javac:
	Launching Applications with java:
	Searching for Other Classes:
	JAR Files and Searching:
	Static Imports:
	A: About the CD:
	System Requirements:
	Installing and Running Master Exam:
	Master Exam:
	Electronic Book:
	Help:
	Removing Installation(s):
	Technical Support:
	LearnKey Technical Support:
	Index:

